Show simple item record

dc.contributor.authorSohaib Latifes_ES
dc.contributor.authorZulqurnain Sabires_ES
dc.contributor.authorMuhammad Asif Zahoor Rajaes_ES
dc.contributor.authorCieza Altamirano, Gilderes_ES
dc.contributor.authorSandoval Núñez, Rafaél Artidoroes_ES
dc.contributor.authorOseda Gago, Dulioes_ES
dc.contributor.authorR. Sadates_ES
dc.contributor.authorMohamed R. Alies_ES
dc.description.abstractIn this communication, a fractional order design and numerical form of the solutions are presented for numerical simulations of heterogeneous mosquito model. The use of the fractional order derivatives is exploited to observe more accurate and exhaustive performances of the numerical simulation of the model. The novel design of the fractional order heterogeneous mosquito differential system is analyzed with stochastic solver based on the internet of things (IoT) technologies, represented with four categories i.e., normal individuals, people with reflex behavior, panic behavior and controlled behavior based differential system. The solutions of the novel design of the fractional order system are presented by using the stochastic paradigm of artificial neural network (ANN) procedures along with the Scaled Conjugate Gradient (SCG), i.e., ANN-SCG, for learning of weights. In ANN-SCG implementation, the data statistics are picked as 78% for training, 11% for both authorization and testing samples to approximate the solutions. The accuracy of the ANN-SCG technique is seen by correlation of the determined outcomes and the information base on Adams-Bashforth-Moulton method based standard solutions. To achieve the capacity, legitimacy, consistent quality, fitness, and accuracy of the ANN-SCG strategy, the reproductions-based error histograms (EHs), MSE, regression, and state transitions (STs) are used for extensive experimentations.es_ES
dc.publisherspringer Linkes_ES
dc.relation.ispartofMultimedia Tools and Applications (2022)es_ES
dc.subjectFractional orderes_ES
dc.subjectMean squareerrores_ES
dc.subjectArtificial neural networkses_ES
dc.subjectScaledconjugate gradienes_ES
dc.subjectReference resultses_ES
dc.titleIoT technology enabled stochastic computing paradigm for numerical simulation of heterogeneous mosquito modeles_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess