UNIVERSIDAD NACIONAL AUTÓNOMA DE CHOTA FACULTAD DE CIENCIAS DE LA INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EVALUACIÓN DEL CONCRETO ELABORADO CON RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN, CHOTA, 2018

TESIS PARA OPTAR EL TÍTULO DE INGENIERO CIVIL

AUTOR
NEYSER FERNÁNDEZ PÉREZ

Chota, Perú

2020

UNIVERSIDAD NACIONAL AUTÓNOMA DE CHOTA

"Un sueño hecho realidad

FORMATO DE AUTORIZACIÓN PARA PUBLICACIÓN DE TESIS Y TRABAJOS DE INVESTIGACIÓN, PARA OPTAR GRADOS ACADÉMICOS Y TÍTULOS PROFESIONALES EN EL REPOSITORIO INSTITUCIONAL DIGITAL – UNACH

1.	DATOS DEL AUTOR: Apellidos y nombres: Fernández Pérez Neyser Código del alumno: 2014050137 Correo electrónico: Neyser.19270@gmail.com		Teléfono: DNI;	995498002 76939846
2.	MODALIDAD DE TRABAJO DE INVESTIGACIO () Trabajo de investigación () Trabajo académico		suficiencia pro	fesional
3.	TÍTULO PROFESIONAL O GRADO ACADÉMIO (x) Bachiller () Licenciac () Magister () Segunda		() Titulo () Docto	ACT USE CONTROL OF THE CONTROL OF TH
4.	TÍTULO DEL TRABAJO DE INVESTIGACIÓN: EVALUACIÓN DEL CONCRETO ELABORADO CON RES DEMOLICIÓN, CHOTA, 2018	SIDUOS DE CONS	TRUCCIÓN Y	
5. 6. 7.	FACULTAD DE: Ciencias de la Ingenieria ESCUELA PROFESIONAL DE: Ingenieria Civil ASESOR: Apellidos y Nombres: Benavidez Núñez Claudia En Correo electrónico: Cbenavidezh@gmail.com	niia	Teléfono: 956 D.N.I: 706	9008297 309688

A través de este medio autorizo a la Universidad Nacional Autónoma de Chota publicar el trabajo de investigación en formato digital en el Repositorio Institucional Digital, Repositorio Nacional Digital de Acceso Libre (ALICIA) y el Registro Nacional de Trabajos de Investigación (RENATI).

Asimismo, por la presente dejo constancia que los documentos entregados a la UNACH, versión digital, son las versiones finales del trabajo sustentado y aprobado por el jurado y son de autoria del suscrito en estricto respeto de la legislación en materia de propiedad intelectual.

FIRMA: NEYSER FERNÁNDEZ PÉREZ

DNI : 76939846

Fecha, 30 de marzo del 2021

EVALUACIÓN DEL CONCRETO ELABORADO CON RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN, CHOTA, 2018

POR:

NEYSER FERNÁNDEZ PÉREZ

Presentada a la Facultad de Ciencias de la Ingeniería de la Universidad Nacional Autónoma de Chota para optar el título de INGENIERO CIVIL

APROBADA POR EL JURADO INTEGRADO POR

Dr. Ing. Luis Alberto Orbegoso Navarro

PRESIDENTE

Dr. Ing. Miguel Ángel Silva Tarrillo

SECRETARIO

Dr. Ing. Elmer Natividad Chávez Vásquez

Reg. CIP. 91731

VOCAL

AGRADECIMIENTOS

Agradecer a mi universidad por la formación brindada, gracias a todos mis docentes que fueron impartiéndome conocimiento a lo largo de mi trayectoria universitaria, a los encargados de los diferentes laboratorios, gracias a mis compañeros y grandes amigos que de alguna u otra forma aportaron conocimiento conmigo y que siempre mostraron la ganas de crecer cada día. Gracias a mis padres que ellos fueron y son el principal apoyo en mi educación, y que ahora se ve reflejado en la culminación de mi vida universitaria, gracias a mi tío Nelson Pérez Torres, a mis abuelos y todos mis familiares que siempre me brindaron su apoyado en todo momento.

Finalmente agradecer a la Ing. Claudia E. Benavidez Núñez por el asesoramiento brindado para que sea posible esta investigación.

Gracias.

DEDICATORIA

Este trabajo va dedicado principalmente a Dios, por haberme dado vida y conocimiento para poder llegar hasta este momento tan importante de mi formación profesional.

A mis padres, Abel Fernández Altamirano y Melida Pérez Torres por ser el pilar más importante y por depositar siempre su confianza y apoyarme incondicionalmente sin importar las adversidades de la vida.

A mi Hermana Yaneth Fernández Pérez, por estar siempre dispuesta a escucharme y ayudarme en cualquier momento.

ÍNDICE DE CONTENIDOS

CAPÍTULO	O I. INTRODUCCIÓN	15
CAPÍTULO	O II. MARCO TEÓRICO	18
2.1.	Antecedentes	18
2.1.1.	Antecedentes internacionales	18
2.1.2.	Antecedentes nacionales	18
2.1.3.	Antecedentes regionales	19
2.2. E	Bases teóricas	20
2.2.1.	Residuos de construcción y demolición (RCD)	20
2.2.2.	Diseño de mezclas	21
2.2.3.	Agregados para concreto (NTP 400.037)	22
2.2.4.	Concreto	23
2.2.5.	Impactos del uso de concreto con RCD	26
2.2.6.	Análisis de impactos ambientales	27
2.3. I	Marco conceptual	28
CAPÍTULO	O III. MARCO METODOLÓGICO	29
3.1. l	Jbicación	29
3.2. F	Población y muestra	30
3.2.1.	Población	30
3.2.2.	Muestra	30
3.3.	Operacionalización de variables	31
3.3.1.	Variable independiente	31
3.3.2.	Variable dependiente	31

3.4.	Equipos, materiales e insumos	33
3.5.	Metodología de la investigación	35
3.5.	1. Tipo de investigación	36
3.5.	2. Diseño de investigación	37
3.6.	Análisis estadístico	38
CAPÍTU	LO IV. RESULTADOS Y DISCUSIÓN	39
4.1.	Resultados	39
4.1.	1. Propiedades físico-mecánicas de los agregados naturales	39
4.1.	2. Propiedades físico-mecánicas de los agregados reciclados	42
4.1.	3. Diseño de mezcla	46
4.1.	4. Propiedades del concreto	48
4.2.	Discusión de resultados	60
4.2.	Propiedades de los agregados	60
4.2.	2. Comparación técnica del concreto	63
4.2.	3. Comparación económica del concreto	69
4.2.	4. Impacto ambiental	74
4.2.	5. Análisis estadístico ANOVA	77
CAPÍTU	LO V. CONCLUSIONES Y RECOMENDACIONES	80
5.1.	Conclusiones	80
5.2.	Recomendaciones	81
CAPÍTU	LO VI. REFERENCIAS BIBLIOGRÁFICAS	82
CAPÍTU	LO VII. ANEXOS	87
Ane	exo N° 1. Matriz de consistencia	87
Δne	avo Nº 2. Panel fotográfico	88

Anexo N° 3. Ficha técnica de cemento tipo I	117
Anexo N° 4. Cotización de maquinaria para la movilización de RCD	118
Anexo N° 5. Diseños de mezcla	119
Anexo N° 6. Plano de ubicación y localización	128
Anexo N° 7. Análisis estadístico ANOVA	130
Anexo N° 8. Formatos de ensavos de laboratorio	133

ÍNDICE DE TABLAS

Tabla 1. Granulometría del Agregado Fino	22
Tabla 2. Magnitud e importancia en la Matriz de Leopold	27
Tabla 3. Número de probetas para ensayo de resistencia a la compresión (f'o	=
210 kg/cm2)	31
Tabla 4. Operacionalización de variables	32
Tabla 5. Granulometría del agregado grueso de la cantera San Juan Del Suro	o. 39
Tabla 6. Propiedades físico-mecánicas del agregado grueso de la "cantera Sa	an
Juan del Suro"	40
Tabla 7. Granulometría del agregado fino de la cantera Conchán	41
Tabla 8. Propiedades físico-mecánicas del agregado fino de la "cantera	
Conchán"	41
Tabla 9. Granulometría del agregado grueso reciclado	43
Tabla 10. Propiedades físico-mecánicas del agregado grueso reciclado	43
Tabla 11. Granulometría del agregado fino reciclado	45
Tabla 12. Propiedades físico-mecánicas del agregado fino reciclado	45
Tabla 13. Diseño de mezclas concreto patrón	46
Tabla 14. Diseño de mezclas concreto reciclado	47
Tabla 15. Dosificación en peso incorporando diferentes porcentajes de A.	
reciclado	47
Tabla 16. Ensayos al concreto en estado fresco	48
Tabla 17. Resistencia a la compresión en concreto con 0% de RCD	51
Tabla 18. Resistencia a la compresión en concreto con 10% de RCD	51
Tabla 19. Resistencia a la compresión en concreto con 25% de RCD	52
Tabla 20. Resistencia a la compresión en concreto con 50% de RCD	52
Tabla 21. Resistencia a la compresión en concreto con 75% de RCD	52

Tabla 22. Resistencia a la compresión en concreto con 100% de RCD	53
Tabla 23. Propiedades del agregado fino natural y reciclado	62
Tabla 24. Propiedades del agregado grueso natural y reciclado	62
Tabla 25. Resistencia a la compresión promedio de los especímenes a los 7,	14
y 28 días	66
Tabla 26. Comparación de resistencia a la compresión a los 28 días	67
Tabla 27. Precio de transformación de los RCD a agregado fino reciclado	69
Tabla 28. Precio de transformación de los RCD a agregado grueso reciclado	70
Tabla 29. Costo de materiales para 1 m3 de concreto con 0% de agregados	
reciclados de RCD	70
Tabla 30. Costo de materiales para 1 m3 de concreto con 10% de agregados	;
reciclados de RCD	71
Tabla 31. Costo de materiales para 1 m3 de concreto con 25% de agregados	;
reciclados de RCD	71
Tabla 32. Costo de materiales para 1 m3 de concreto con 50% de agregados	;
reciclados de RCD	71
Tabla 33. Costo de materiales para 1 m3 de concreto con 75% de agregados	;
reciclados de RCD	72
Tabla 34. Costo de materiales para 1 m3 de concreto con 100% de agregado)S
reciclados de RCD	72
Tabla 35. Costo/beneficio del concreto con agregados reciclados de RCD	73
Tabla 36. Matriz de Leopold	75
Tabla 37 Datos de resistencia a la compresión para análisis estadístico ANO\	/A
	78
Tabla 38 Análisis de varianza en software Minitab*19	79
Tabla 30 Resumen de modelo estadístico Minitah*10	70

ÍNDICE DE FIGURAS

Figura 1. Producto bruto interno por actividad económica 2019_II	. 16
Figura 2. Esquema de planta de procesamiento de RCD	. 20
Figura 3. Ensayos físico-mecánicos para agregados	. 23
Figura 4. Proporciones típicas en volumen absoluto de los componentes del	
concreto	. 24
Figura 5. Molde de ensayo para asentamiento	. 25
Figura 6. Asentamientos referenciales	. 25
Figura 7. Formas de quiebre en especímenes de concreto	. 26
Figura 8. Av. Inca Garcilaso de la Vega – Reciclaje de concreto	. 29
Figura 9. Chancadora – Obtención de agregados reciclados	. 30
Figura 10. Técnicas e instrumentos de recolección de datos	. 34
Figura 11. Diseño de investigación experimental clásico	. 37
Figura 12. Curva granulométrica del agregado grueso de la cantera San Juan	
Del Suro	. 40
Figura 13. Curva granulométrica del agregado fino de la cantera Conchán	. 42
Figura 14. Curva granulométrica del agregado grueso reciclado	. 44
Figura 15. Curva granulométrica del agregado fino reciclado	. 46
Figura 16. Densidad (gr/cm3) de la mezcla de concreto	. 49
Figura 17. Asentamiento (pulg) de la mezcla de concreto	. 49
Figura 18. Contenido de aire (%) de la mezcla de concreto	. 50
Figura 19. Temperatura (°C) de la mezcla de concreto	. 50
Figura 20. Promedio de la resistencia axial del concreto con 0% RCD	. 53
Figura 21. Resistencia axial a los 28 días del concreto con 0% RCD	. 54
Figura 22. Promedio de la resistencia axial del concreto con 10% RCD	. 54

Figura 23. Resistencia axial a los 28 días del concreto con 10% RCD	55
Figura 24. Promedio de la resistencia axial del concreto con 25% RCD	55
Figura 25. Resistencia axial a los 28 días del concreto con 25% RCD	56
Figura 26. Promedio de la resistencia axial del concreto con 50% RCD	56
Figura 27. Resistencia axial a los 28 días del concreto con 50% RCD	57
Figura 28. Promedio de la resistencia axial del concreto con 75% RCD	57
Figura 29. Resistencia axial a los 28 días del concreto con 75% RCD	58
Figura 30. Promedio de la resistencia axial del concreto con 100% RCD	58
Figura 31. Resistencia axial a los 28 días del concreto con 100% RCD	59
Figura 32. Peso específico del concreto a los 28 días	59
Figura 33. Comparación de resistencia axial de PP y PP-10%	63
Figura 34. Comparación de resistencia axial de PP y PP-25%	64
Figura 35. Comparación de resistencia axial de PP y PP-50%	64
Figura 36. Comparación de resistencia axial de PP y PP-75%	65
Figura 37. Comparación de resistencia axial de PP y PR-100%	65
Figura 38. Resistencia a la compresión promedio de los especímenes a los 7,	14
y 28 días	66
Figura 39. Curva de compresión axial de diferentes porcentajes de agregado	
reciclado de RCD, a los 28 días	68
Figura 40. Resistencia a la compresión y peso específico a los 28 días de los	
especímenes de concreto con RCD	68
Figura 41. Costo de materiales para 1 m3 de concreto con agregados reciclado	os
	73
Figura 42. Resistencia a la compresión (kg/cm2) y costo de los materiales para	ì
1m3 de concreto	74

RESUMEN

Los objetivos fueron: a) analizar las propiedades físico-mecánicas de los agregados producto de la demolición de concreto reciclado, para diseño de mezclas de este concreto; b) elaborar el diseño de mezcla con el Método del Comité ACI 211; y c) comparar técnica, económica y ambientalmente el concreto elaborado con Residuos de Construcción y Demolición con un concreto convencional con agregados de la cantera Conchán para una resistencia de 210 kg/cm2. La metodología ha consistido en determinar las características físico-mecánicas de los agregados provenientes del concreto reciclado y de cantera; así como caracterizar al concreto fresco y endurecido con el 0%, 10%, 25%, 75% y 100% de agregados reciclados incorporados al diseño de mezcla patrón y complementarlo con un análisis económico y ambiental.

Los resultados comparativos a los ensayos de agregados reciclados y de cantera, indican que los primeros, aumentan la absorción del agregado fino y grueso en 939.60% y 502.94%, con disminución del peso específico del agregado fino y grueso en 21.24% y 14.25%. De igual manera, al comparar la resistencia a la compresión axial a los 28 días del concreto patrón respecto al concreto reciclado, se encontró que este último tiende a disminuir 1.45% con el 10%, 7.07% con el 25%, 17.13% con el 50%, 20.24% con 75% y 19.15% con el 100%. En el costo de materiales por metro cúbico, la preparación del concreto reciclado disminuye en 0.35%, 0.89%, 1.77% y 9.88%, para 10%, 25%, 50%, 75% y 100%, respectivamente. Por último, el concreto con agregado reciclado presenta viabilidad ambiental, debido a que genera una mediana magnitud de descontaminación – medianamente importante.

Palabras clave: Agregados reciclados, residuos de concreto, RCD, viabilidad, diseño de mezclas.

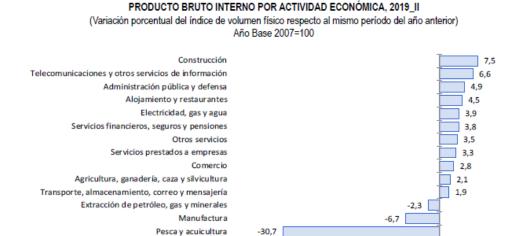
ABSTRACT

The objectives were: a) to analyze the physical-mechanical properties of the aggregates resulting from the demolition of recycled concrete, for the design of mixtures of this concrete; b) develop the mixture design using ACI Committee Method 211; and c) compare technically, economically and environmentally the concrete made with Construction and Demolition Residues with a conventional concrete with aggregates from the Conchán quarry for a resistance of 210 kg / cm2. The methodology has consisted in determining the physical-mechanical characteristics of the aggregates from recycled and quarry concrete; as well as characterize fresh and hardened concrete with 0%, 10%, 25%, 75% and 100% recycled aggregates incorporated into the standard mix design and complement it with an economic and environmental analysis.

The comparative results to the tests of recycled and quarry aggregates indicate that the former increase the absorption of fine and coarse aggregate by 939.60% and 502.94%, with a decrease in the specific weight of fine and coarse aggregate by 21.24% and 14.25%. Similarly, when comparing the resistance to axial compression at 28 days of standard concrete with respect to recycled concrete, it was found that the latter tends to decrease 1.45% with 10%, 7.07% with 25%, 17.13% with the 50%, 20.24% with 75% and 19.15% with 100%. In the cost of materials per cubic meter, the preparation of recycled concrete decreases by 0.35%, 0.89%, 1.77% and 9.88%, for 10%, 25%, 50%, 75% and 100%, respectively. Finally, concrete with recycled aggregate presents environmental viability, due to the fact that it generates a medium magnitude of decontamination - moderately important.

Keywords: Recycled aggregates, concrete waste, CDR, feasibility, mix design.

CAPÍTULO I.


INTRODUCCIÓN

La industria de la edificación para su desarrollo extrae recursos naturales que cada vez están más escasos, y deja como saldo escombros o residuos de las actividades de construcción y demolición (RCD), mismos que en el contexto actual del cuidado del medio ambiente pueden ser reutilizados. "En Estados Unidos se estima que hay alrededor de 140 millones de toneladas y Europa está alrededor de los 970 millones de toneladas/año, lo que representa casi 2 toneladas per cápita" (Guacaneme, 2015, p. 3).

Perú no es la excepción, "en el país la industria de la construcción ha ido creciendo desde fines de los años 90, alcanzando para el 2012 un PBI de 12.4% impulsado principalmente por la autoconstrucción y el creciente desarrollo de proyectos comerciales" (Montoya, 2014, p. 11). Para el 2019 el crecimiento del PBI fue favorable para las actividades económicas del sector construcción con un incremento del 7.5% respecto al año anterior (Fig. 1), debido a la ejecución de obras públicas y privadas, incremento que representa también el aumento de RCD. El Organismo de Evaluación y Fiscalización Ambiental (OEFA, 2019) asevera que uno de los principales problemas del país es la poca cantidad de rellenos sanitarios (9) o de seguridad (2) para una cantidad de habitantes mayor a 30 millones, razón que ocasiona que los RCD vayan a parar a lugares no autorizados, aun cuando la Ley N° 27314 "Ley General de Residuos Sólidos", establece los lineamientos para la gestión de los residuos sólidos, y la NTP 400.050 "Manejo de residuos de la construcción" argumenta que el concreto obtenido de demoliciones o remodelaciones puede ser reciclado y reutilizado al ser un material no tóxico.

Figura 1.

Producto bruto interno por actividad económica 2019 II

-40.0

Gráfico Nº 8

Nota: Instituto Nacional de Estadística e Informática.

Producto Bruto Interno

DM-Otros impuestos a los productos

"La acumulación de escombros de concreto producto de la demolición de edificaciones, pavimentos, puentes, entre otros, genera un efecto ambiental negativo para la ciudad de Cajamarca" (Asencio, 2014, p. 13); además según la OEFA Cajamarca cuenta con un solo relleno sanitario autorizado para toda su población, por tanto, para su población no se abastece.

-30.0

-20.0

-10.0

1,2

1,3

10.0

0.0

La ciudad de Chota está creciendo aceleradamente y como consecuencia aumenta los RCD, pero en contraste la ciudad no tiene un relleno sanitario autorizado para la eliminación o almacenaje de estos residuos y como consecuencia estos terminan siendo arrojados a las afueras de la ciudad, contaminando el medio ambiente.

Frente a la problemática se planteó la necesidad de realizar la presente investigación, donde se han reciclado los RCD y se han sometido a una transformación para poder obtener agregado fino y agregado grueso "componentes principales para poder hacer concreto", luego se ha procedido a

realizar un estudio físico – Mecánico de estos agregados reciclados de acuerdo a las NTP, con el fin de responder a la pregunta: ¿Cuáles son los resultados de la evaluación del concreto elaborado con residuos de construcción y demolición de la ciudad de chota? De tal manera que se determine si estos agregados pueden o no ser utilizados para la elaboración de cualquier concreto.

Validando la hipótesis: "El concreto elaborado con residuos de construcción y demolición, cumple con los estándares de calidad requeridos en las Normas Técnicas".

A partir del objetivo general "Evaluar el concreto elaborado con residuos de construcción y demolición de la ciudad de chota, a fin de cumplir con las normas técnicas". Y los objetivos específicos:

- Analizar las propiedades físico mecánicas de los agregados producto de la demolición de concreto reciclado, para diseño de mezclas de este concreto.
- Elaborar diseño de mezcla con el método del Comité ACI 211.
- Comparar técnica, económica y ambientalmente el concreto elaborado con Residuos de Construcción y Demolición con un concreto convencional con agregados de la cantera de Conchan para una resistencia $f'c = 210 \ kg/cm^2$.

CAPÍTULO II.

MARCO TEÓRICO

2.1. Antecedentes

2.1.1. Antecedentes internacionales

Díaz (2020) elaboró y ensayo el concreto en Colima utilizando los Residuos de construcción y demolición (RCD), demostrando que es factible utilizar los RCD como agregado para la elaboración de concreto ya que presenta resistencias similares al concreto con agregados vírgenes, además de ser más económico.

Olaya y Rojas (2020) analizaron la influencia de los RCD prevenientes de concreto en el comportamiento mecánico en morteros de cemento hidráulico, concluyendo que existe viabilidad para el uso de RCD en porcentajes menores de composición de hasta 10%.

Silva-Urrego y Delvasto-Arjona (2020) hicieron uso de los residuos de construcción y demolición como material cementicio suplementario y agregado grueso reciclado en concretos autocompactantes. Las mezclas de concreto con RCD como remplazo del 20% del volumen del cemento Portland, logrando resistencias a la compresión superiores a 21 MPa (28 días), adecuada para muros divisorios de casas según la norma Colombiana NSR 10.

2.1.2. Antecedentes nacionales

Saravia (2019) utilizó los RCD como agregados reciclados para la elaboración de concreto. Concluyendo que los agregados reciclados provenientes de RCD representan una alta viabilidad técnica, económica y ambiental.

Jordan y Viera (2014) analizaron las propiedades mecánicas del concreto elaborado con arena de la cantera La Cumbre y agregado grueso reciclado al 0, 25, 50 y 100% para diseños f'c= 175 y 210 kg/cm2. Concluyó, que existe viabilidad para la elaboración de concreto con 25% del agregado reciclado.

Sumari (2016) elaboró mezclas de concreto de mediana a alta resistencia con residuos de concreto como agregados y cemento, obteniendo resistencias similares a los del concreto elaborado con agregados naturales con variaciones de 3%.

Montoya (2014) analizó el concreto con 30-45 MPa, elaborado con 0, 25, 50 y 100% de agregado reciclado, demostrando que el concreto con 25% de agregado reciclado alcanza propiedades similares al concreto convencional.

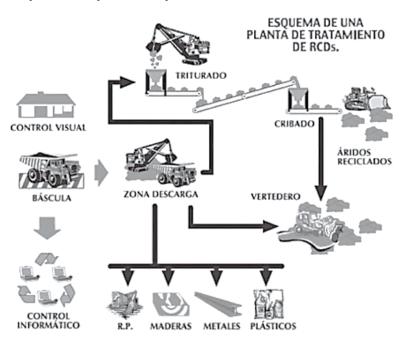
2.1.3. Antecedentes regionales

Tafur (2015) determinó las propiedades físico-mecánicos del concreto f'c= 210 kg/cm2 elaborado con agregado grueso reciclado en la ciudad de Cajamarca, concluyendo que el concreto convencional alcanza una resistencia de 218.65 kg/cm2, mientras que el concreto elaborado con agregado grueso reciclado alcanza resistencias de 228.36 kg/cm2.

Asencio (2014) analizó los efectos de los agregados reciclados en la resistencia a la compresión del concreto $f'c=210\ kg/cm^2$, concluyendo que el concreto elaborado con agregados reciclados es 15.49% menos resistente que el concreto convencional pero mucho más económico.

2.2. Bases teóricas

2.2.1. Residuos de construcción y demolición (RCD)


Son residuos que surgen de las actividades de construcción, remodelación y demolición (Aldana y Serpell, 2012). Se clasifican de acuerdo a su procedencia en (Pacheco, et al., 2017):

- Materiales de excavación: tierra, arena, grava, rocas, etc.
- Construcción y mantenimiento de obras civiles: asfalto, arena,
 grava y metales, etc.
- Materiales de demolición: bloques de concreto, ladrillos, yeso, porcelana y cal-yeso.

La actividad principal de donde se obtiene del 15 al 25% de los RCD del mundo es la demolición de edificaciones e infraestructura (Mejía et al., 2013) por lo que es imprescindible plantear el procesamiento y reutilización de los residuos de concreto (Castaño et al., 2013)

Figura 2.

Esquema de planta de procesamiento de RCD

Nota: (Castaño et al., 2013)

Comité ACI 555R-01: Eliminación y reutilización de concreto endurecido

Aquí se presenta información sobre la extracción y reutilización de concreto endurecido. La aplicabilidad, ventajas, limitaciones y consideraciones de seguridad de varios tipos de métodos de eliminación de concreto, incluyendo herramientas de mano, herramientas eléctricas manuales, equipos montados en vehículos, con chorro de explosivo, taladros y sierras, agentes de demolición no explosivas, divisores mecánicos, etc.

Se discuten los sistemas disponibles de eliminación de superficie, sus aplicaciones probables, y ventajas y desventajas de diferentes tipos de sistemas de eliminación de la superficie. se presentan

Consideraciones para la evaluación y el procesamiento de residuos de concreto para la producción de agregados adecuados para reutilizaciones en la construcción de concreto.

2.2.2. Diseño de mezclas

El Comité ACI 211,1 "Práctica estándar para la selección de las proporciones para concreto de peso normal, peso pesado, y en concreto masivo" describe, con ejemplos, los métodos para seleccionar y ajustar las proporciones para el hormigón de peso normal, con y sin aditivos, y materiales de escoria. Los procedimientos tienen en consideración los requisitos para trabajabilidad, consistencia, fuerza, y durabilidad. Ejemplo cálculos se muestran para ambos métodos, incluyendo los ajustes basados en los caracteres del primer lote de prueba.

La dosificación del concreto pesado para fines tales como blindaje contra la radiación y las estructuras de contrapeso de puente se describe en un apéndice. Este apéndice utiliza el método de volumen absoluto,

que en general se acepta y es más conveniente para el concreto de peso pesado. También hay un apéndice que proporciona información sobre la dosificación de concreto masivo. El método volumen absoluto se utiliza debido a su aceptación general.

- Paso 1: Elección del revenimiento o asentamiento
- Paso 2: Selección del tamaño máximo nominal del agregado grueso
- Paso 3: Estimación del contenido de agua y aire
- Paso 4: Relación agua cemento $(\frac{a}{c})$
- Paso 5: Cálculo del contenido de cemento
- Paso 6: Estimación del contenido de agregado grueso
- Paso 7: Estimación del contenido de agregado fino
- Paso 8: Ajustes por humedad de los agregados
- Paso 9: Ajustes de prueba por lotes

2.2.3. Agregados para concreto (NTP 400.037)

Agregado fino (AF)

Material granular que pasa la malla 3/8" al 100%, denominada comúnmente arena, cumple con el siguiente huso granulométrico:

Tabla 1.

Granulometría del Agregado Fino

Tamiz	% que pasa
3/8 pulg	100
<i>N</i> ° 4	95-100
<i>N</i> ° 8	80-100
<i>N</i> ° 16	50-85
<i>N</i> ° 30	25-60
<i>N</i> ° 50	5-30
<i>N</i> ° 100	0-10

Nota: NTP 400.037

Agregado grueso (AG)

Material producto de la transformación de la roca en grava o piedra chancada, que debe cumplir con los requisitos granulométricos de la NTP 400.037.

Figura 3.

Ensayos físico-mecánicos para agregados

Nota: (Elaboración propia, 2019)


2.2.4. Concreto

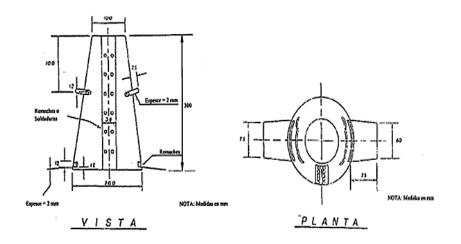
"También denominado Hormigón, es la mezcla de un material aglutinante (cemento portland), un material de relleno (agregados o áridos), agua y eventualmente aditivos, que al endurecer forma un todo

compacto (piedra artificial) y después de cierto tiempo es capaz de soportar grandes esfuerzos de compresión" (Sánchez, 2001)

Figura 4.

Proporciones típicas en volumen absoluto de los componentes del concreto

Nota: (Ticlla, 2018)


Propiedades del concreto en estado fresco

Según Pacheco (2017) estas propiedades son:

- Plasticidad. Estado por el cual el concreto puede ser moldeado,
 adquiriendo la forma del molde.
- Trabajabilidad. Denominada manejabilidad determina la habilidad del concreto para ser transportado, colocado y vibrado para su consolidación.
- Consistencia. Determina el estado de fluidez de la mezcla cementante, se determina por medio del ensayo de asentamiento con el cono de Abrams.

Figura 5.

Molde de ensayo para asentamiento

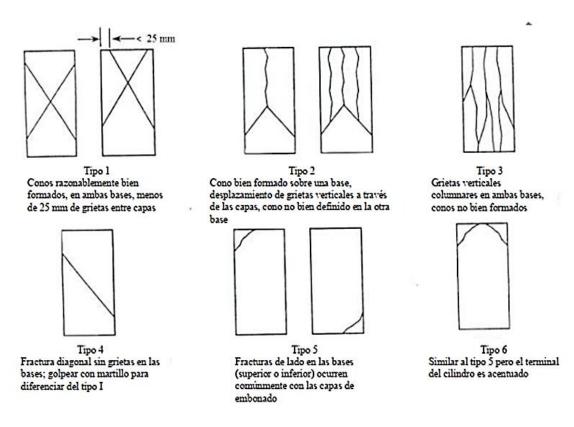
Nota: (NTP 339.035, 2015).

Figura 6.

Asentamientos referenciales

Nota: (NTP 339.035, 2015).

Propiedades del concreto en estado endurecido


Según Pacheco (2017) estas propiedades son:

- Impermeabilidad. Capacidad para impedir el paso de agua a través de sí mismo.
- Durabilidad. Resistencia a la intemperie, ataque químico, abrasión y cualquier otro proceso.
- Resistencia a la flexión. Esfuerzo máximo que puede soportar una viga a flexión antes que se agriete.

 Resistencia a la compresión. Esfuerzo máximo que puede soportar el concreto bajo una carga de aplastamiento.

Figura 7.

Formas de quiebre en especímenes de concreto

Nota: (NTP 339.034, 2015)

2.2.5. Impactos del uso de concreto con RCD

El uso de RCD en concreto trae impactos positivos para el entorno estos se pueden dividir en:

Impactos técnicos. La resistencia estructural del concreto con
 RCD no tiene por qué variar respecto a un concreto convencional,
 si se plantea un diseño de mezclas adecuado, en España se
 recomienda su uso hasta un 20%. (Guacaneme, 2015)

- Impactos económicos. El concreto con RCD es más económico que un concreto convencional, debido a la economía circular que representa producto del reciclaje de RCD. (Jaramillo, 2019)
- Impactos ambientales. El concreto con RCD presenta beneficios al entorno ambiental por la reutilización de los escombros de concreto. (Guacaneme, 2015)

2.2.6. Análisis de impactos ambientales

La evaluación de impactos ambientales (EIA) es un proceso destinado a determinar en el contexto los posibles efectos positivos o negativos al entorno ambiental por parte de un producto, proyecto o acciones humanas. (García, 2004)

Para el análisis de impactos comúnmente se aplica el método de la "Matriz de Leopold", procedimiento que relaciona los impactos económicos, ecológicos y sociales de un proyecto según su importancia y magnitud de afectación en una escala de 1 a 10, para ver el daño o positividad que puede causar el proyecto en el ambiente. (Leopold et al., 1971)

Tabla 2.

Magnitud e importancia en la Matriz de Leopold

Magnitud	Valor	Importancia	Valor
Muy Baja Magnitud	1	Sin Importancia	1
Muy Baja Magrilluu	2	Siri importancia	2
Poio Mognitud	3		3
Baja Magnitud	4	Poco Importante	4
	5	Medianamente	5
Mediana Magnitud	6		6
	7	Importante	7
Alto Mognitud	8	Importanta	8
Alta Magnitud	9	Importante	9
Muy Alta Magnitud	10	Muy Importante	10

Nota: (Leopold et al., 1971)

2.3. Marco conceptual

Concreto. También denominado Hormigón, es la mezcla de un material aglutinante (cemento portland), un material de relleno (agregados o áridos), agua y eventualmente aditivos, que al endurecer forma un todo compacto (piedra artificial) y después de cierto tiempo es capaz de soportar grandes esfuerzos de compresión (Sánchez, 2001)

Residuos de construcción y demolición. Son residuos que surgen de las actividades de construcción, remodelación y demolición (Aldana y Serpell, 2012).

Agregado. Conjunto de partículas de origen natural o artificial, que pueden ser tratados o elaborados, y cuyas dimensiones están comprendidas entre los límites fijados por esta NTP. Se les llama también áridos. (NTP 400.011)

Agregado fino. Agregado artificial de rocas o piedras proveniente de la disgregación natural o artificial, que pasa el tamiz normalizado 9,5 mm (3/8 pulg) y que cumple con los límites establecidos en la NTP 400.037. (NTP 400.011).

Agregado grueso. Agregado retenido en el tamiz normalizado 4,75 mm (Nº 4) que cumple los límites establecidos en la NTP 400.037, proveniente de la disgregación natural o artificial de la roca. (NTP 400.011).

Agregado reciclado. Agregado procedente de tratamiento de materiales inorgánicos usados en construcción. (NTP 400.011).

CAPÍTULO III.

MARCO METODOLÓGICO

3.1. Ubicación

La ciudad de Chota, puesto que, es el lugar donde se realizó la investigación. Los agregados fino y grueso fueron obtenidos de las canteras Conchán y San Juan del Suro, respectivamente. El concreto reciclado fue derivado a partir de la demolición del pavimento rígido de la Av. Inca Garcilaso, Chota (Fig. 8) con coordenadas UTM84-17N (758959.5 E, 9274396.7 N). Las pruebas de laboratorio se ejecutaron en la Universidad Nacional Autónoma de Chota.

Figura 8.

Av. Inca Garcilaso de la Vega – Reciclaje de concreto

Nota: (Google earth, 2019)

El procesamiento para la obtención de los agregados reciclados se realizó en la chancadora ubicada en el cruce entre la carretera Chota -

Chiclayo y la Av. Perú (Fig. 9) con coordenadas UTM84-17N (757740 E, 9274957N, 2261.52 m.s.n.m).

Figura 9.

Chancadora – Obtención de agregados reciclados

Nota: (Google earth, 2019)

3.2. Población y muestra

3.2.1. Población

Testigos hechos con agregados de cantera y agregado reciclado.

Para la presente tesis se reciclo el concreto demolido del pavimentado de la Av. Inca Garcilaso de Vega de la Provincia de Chota.

3.2.2. Muestra

La muestra fue determinada por conveniencia, y estuvo comprendida por todos los testigos o probetas de concreto reciclado y concreto simple (c°s) con f'c = 210 kg/cm2, para mezcla con 0% (c°s), 10%, 25%, 50%, 75% y 100% de residuos de concreto en remplazo de los agregados de cantera.

Tabla 3.

Número de probetas para ensayo de resistencia a la compresión

(f'c= 210 kg/cm2)

Edades	7 días	14 días	28 días
% De RCD	Cu	rado según norm	na
10%	5	5	5
25%	5	5	5
50%	5	5	5
75 %	5	5	5
100%	5	5	5
C° Simple	5	5	5
	Total, de probetas		90

Nota: (Elaboración propia, 2019)

3.3. Operacionalización de variables

3.3.1. Variable independiente

VI: Residuos de construcción y demolición

Es la materia adicionante que variará las propiedades del concreto, para lograr un nuevo tipo de mezcla cementante. Los RCD son obtenidos a partir de las actividades de la industria de la construcción, en este caso representa los escombros de concreto generados por la trituración del "pavimento rígido de la Av. Inca Garcilaso de la Vega".

3.3.2. Variable dependiente

VD: Concreto

Es el material a elaborar a partir de un diseño de mezclas que incluye los componentes convencionales y un material adicionante nuevo que son los "agregados reciclados" para determinar la contrastación de las propiedades técnicos, económicos y ambientales de los dos tipos de concreto analizados.

Tabla 4.

Operacionalización de variables

Variables	Dimensiones	Indicadores	Instrumentos	Índice
		Granulometría	Curva Granulométrica	%
		Contenido de humedad	Formato de ensayo	-
	Propiedades físicas	Porcentaje de absorción	Formato de ensayo	
VI: Residuos de	noioae	Peso especifico	Formato de ensayo	
construcción y demolición		Peso unitario	Formato de ensayo	
,		Resistencia	Formato de ensayo	
	Propiedades mecánicas	Durabilidad	Formato de ensayo	%
		Porcentaje de Finos	Formato de ensayo	%
		Granulometría agregado fino	Curva Granulométrica	%
	Diseño de	Granulometría agregado grueso	Curva Granulométrica	%
	mezcla con RCD	Agua	Tabla de factor de agua	Lts.
		Cemento	Certificado de calidad	% % % kg/m³ kg/cm² % % % % Lts. bol/kg % m³ bol/kg pulg. kg/cm² % kg/cm²
		Granulometría agregado fino	Curva Granulométrica	
	Diseño de	Granulometría agregado grueso	Curva Granulométrica	
VD:	mezcla convencional	Agua	Tabla de factor de agua	
Concreto		Cemento	Certificado de calidad	bol/kg
		Asentamiento	Formato de ensayo	pulg.
	F	Comprensión axial	Formato de ensayo	kg/cm ²
	Ensayos	Contenido de aire	Formato de ensayo	%
		Densidad	Formato de ensayo	% kg/m³ kg/m³ kg/cm² % % % % Lts. bol/kg % m³ bol/kg pulg. kg/cm² % kg/m³ s/.
	Costos	Costo de agregados Costo de materiales	Hoja de costo	
		por 1 m ³ de concreto	Hoja de costo	5/.

Nota: (Elaboración propia, 2019)

3.4. Equipos, materiales e insumos

Observación. Técnica de visualización de los procesos desarrollados durante la experimentación.

- Cámara fotográfica
- Cuaderno de registro

Ensayo en agregados. Ensayos que permiten caracterizar a los agregados y los RCD triturados.

- Tamices
- Molde
- Varilla compactadora
- Agua destilada
- Máquina de Los Ángeles

Elaboración de especímenes. Técnica que involucra la elaboración de los especímenes de ensayo para la experimentación.

- Moldes
- Barra compactadora
- Martillo de goma
- Cuchara de muestreo
- Plancha de albañil
- Mezcladora
- Agregados

Ensayos en el concreto en estado fresco. Ensayos previos a la constitución de los especímenes, realizados a la mezcla cementante.

- Cono de Abrams
- Barra compactadora
- Olla Washington

Termómetro digital

Ensayos en el concreto endurecido. Ensayos para determinar las propiedades mecánicas del concreto convencional y con RCD.

- Especímenes de concreto
- Vernier
- Regla graduada
- Máquina de ruptura de probetas

Comparación. Representa el cotejo de los valores alcanzados por el concreto convencional y el concreto con RCD para determinar cual de estos presenta beneficios técnicos, económicos y ambientales.

- Computadora
- Software S10
- Software Microsoft Excel

Figura 10.

Técnicas e instrumentos de recolección de datos

Nota: (Elaboración propia, 2019)

3.5. Metodología de la investigación

En la NTP 400.050 indica que el concreto proveniente de las demoliciones y remodelaciones, está en la lista de RCD no tóxicos y por no tanto no necesita ninguna fase de desinfección, se reciclo el concreto proveniente de la demolición del pavimentado de la Av. Inca Garcilaso de la Vega, y la cual se trasladó a una chancadora de piedra para su respectivo procesado.

Con el concreto reciclado en la chancadora, se procedió a la trituración manual de los bloques de concreto para que estos puedan ser procesados por la maquina chancadora, al mismo tiempo de tubo que realizar la limpieza de la muestra para eliminar materiales adheridos en el concreto.

Se obtuvo agregado grueso reciclado al procesarlo en la maquina chancadora (TMN 1"). Así mismo, se procesó el agregado fino reciclado el cual tuvo que pasar por un tamizado por el tamiz de 3/8".

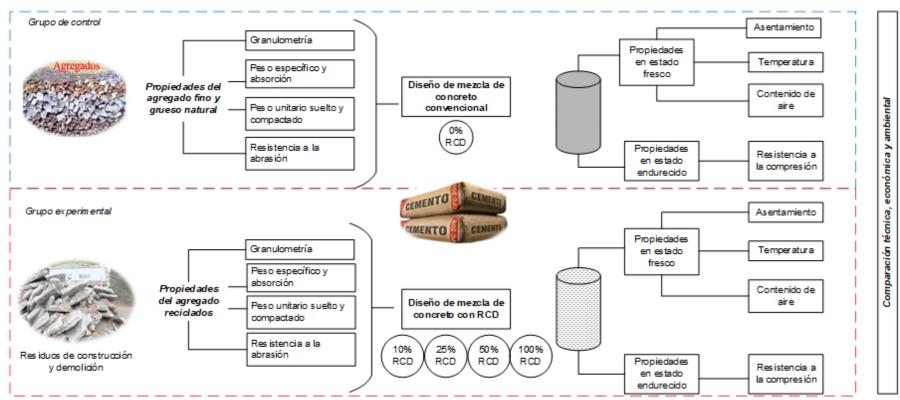
Se solicito los agregados naturales fino y grueso de las canteras conchan y San Juan del Suro respectivamente, los cuales fueron almacenados cerca de la UNACH.

Teniendo los agregados se realizó la caracterización de los agregados acorde a las NTP.

Con los resultados obtenidos en laboratorio, se realizó el diseño de mezclas $f'c=210\ kg/cm^2$ por el método ACI-211.

Con las proporciones de los materiales se inició el llenado de probetas y las pruebas a la mezcla cementante como: temperatura, slump, contenido de aire y densidad.

Después de pasado 7, 14 y 28 días de curado respectivamente de cada muestra, se tomó el peso y medidas de cada espécimen y se realizó el ensayo de compresión.


3.5.1. Tipo de investigación

La investigación es de tipo "cuantitativa experimental" porque utiliza un proceso ordenado cuantificable para variar la variable dependiente "concreto" a partir de la adición de la variable independiente "Residuos de construcción y demolición", de tal forma que se logre determinar el concreto con mejores beneficios técnicos, económicos y ambientales, para la construcción en la ciudad de Chota. (Hernández et al., 2014)

3.5.2. Diseño de investigación

Figura 11.

Diseño de investigación experimental clásico

3.6. Análisis estadístico

Un análisis de varianza (ANOVA) prueba la hipótesis de que las medias de dos o más poblaciones son iguales. "El ANOVA de una vía, ANOVA con un factor o modelo factorial de un solo factor es el tipo de análisis que se emplea cuando los datos no están pareados y se quiere estudiar si existen diferencias significativas entre las medias de una variable aleatoria continua en los diferentes niveles de otra variable cualitativa o factor. Es una extensión de los t-test independientes para más de dos grupos" (Amat, 2016). El análisis estadístico ha sido realizado por medio del software Minitab*19, aplicando para ello, las siguientes fórmulas estadísticas:

Promedio:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \sum_{i=1}^n \frac{x_i}{i=1}; n = tamaño de la muestra \dots (1)$$

Varianza:

$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}, donde \ x_i \ representa \ los \ datos \ de \ la \ muestra \dots \dots (2)$$

Desviación estándar:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}, donde \ x_i \ representa \ los \ datos \ de \ la \ muestra \dots (3)$$

CAPÍTULO IV.

RESULTADOS Y DISCUSIÓN

4.1. Resultados

4.1.1. Propiedades físico-mecánicas de los agregados naturales

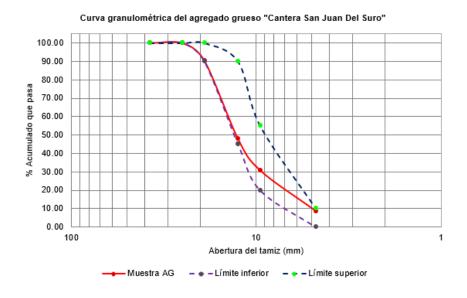
El análisis granulométrico del agregado grueso de la "Cantera San Juan del Suro" (Tabla 5) cumple con el huso granulométrico de la NTP 400.037 (Fig. 12), para un tamaño máximo nominal (TMN) igual a ¾", con una cantidad promedio que pasa el tamiz N° 200 equivalente a 0.88%, valor menor al máximo permisible (Tabla 6). El peso específico, peso unitario suelto y peso unitario compactado equivale a 2595.10, 1379.42, 1529.80 kg/m3, valores que influyen en la proporción de materiales, así mismo el contenido de humedad y el porcentaje de absorción asciende a 0.20 y 0.68%, valores que alteran la cantidad efectiva de agua. El desgaste por abrasión es 22.04% valor que cumple con los estándares normativos (NTP 400.037). Por tanto, el agregado grueso de la "Cantera San Juan del Suro" puede ser utilizado en la elaboración de concreto.

Tabla 5.

Granulometría del agregado grueso de la cantera San Juan Del Suro

N° Tamiz	Abertura	Según N	TP 400.037	% Que Pasa Acumulado
	del Tamiz – (mm)	Límite inferior	Límite Superior	Muestra 1
2"	50	100	100	100.00
1 1/2"	37.5	100	100	100.00
1"	25	100	100	100.00
3/4"	19	90	100	90.40
1/2"	12.5	45	90	47.85
3/8"	9.5	20	55	30.79
# 4	4.75	0	10	8.67

Tabla 6.


Propiedades físico-mecánicas del agregado grueso de la "cantera San Juan del Suro"

Propiedad físico-mecánica	A.G. de la cantera San Juan del Suro
Tamaño máximo nominal	3/4"
Porcentaje que pasa malla N° 200 (%)	0.88
Contenido de humedad (%)	0.20
Peso unitario suelto (kg/m3)	1379.42
Peso unitario compactado (kg/m3)	1529.80
Peso específico (kg/m3)	2595.10
Porcentaje de absorción (%)	0.68
Desgaste por abrasión (%)	22.04

Figura 12.

Curva granulométrica del agregado grueso de la cantera San Juan

Del Suro

Nota: (Elaboración propia, 2019)

El análisis granulométrico del agregado fino de la "Cantera Conchán" (Tabla 7) cumple con el huso granulométrico de la NTP 400.037 (Fig. 13), para un módulo de finura 2.36, valor por encima del

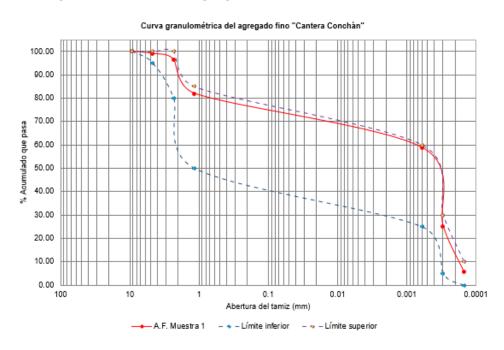
mínimo y por debajo del máximo, con una cantidad promedio que pasa el tamiz N° 200 equivalente a 3.18%, valor menor al máximo permisible (Tabla 8). El peso específico, peso unitario suelto y peso unitario compactado equivale a 2586.29, 1515.28, 1591.25 kg/m3, valores que influyen en la proporción de materiales, así mismo el contenido de humedad y el porcentaje de absorción asciende a 1.43 y 1.01%, valores que alteran la cantidad efectiva de agua. Por tanto, el agregado fino de la "Cantera Conchán" cumple con los estándares normativos (NTP 400.037) y puede ser utilizado en la elaboración de concreto.

Tabla 7.

Granulometría del agregado fino de la cantera Conchán

N° Tamiz	Abertura del	Según N	TP 400.037	% Que Pasa Acumulado
N Tamiz	Tamiz (mm)	Límite inferior	Límite Superior	Muestra 1
3/8"	9.5	100	100	100.00
# 4	4.75	95	100	98.75
#8	2.36	80	100	95.99
# 16	1.18	50	85	80.64
# 30	0.0006	25	60	57.99
# 50	0.0003	5	30	24.96
# 100	0.00015	0	10	5.81

Tabla 8.


Propiedades físico-mecánicas del agregado fino de la "cantera Conchán"

Propiedad físico-mecánica	A.F. de la cantera Conchán		
Módulo de finura	2.36		
Porcentaje que pasa malla N° 200 (%)	3.18		
Contenido de humedad (%)	1.43		
Peso unitario suelto (kg/m3)	1515.28		

Peso unitario compactado (kg/m3)	1591.25
Peso específico (kg/m3)	2586.29
Porcentaje de absorción (%)	1.01

Figura 13.

Curva granulométrica del agregado fino de la cantera Conchán

Nota: (Elaboración propia, 2019)

4.1.2. Propiedades físico-mecánicas de los agregados reciclados

El análisis granulométrico del agregado grueso reciclado (Tabla 9) cumple con el huso granulométrico "56" de la NTP 400.037 (Fig. 14), para un tamaño máximo nominal (TMN) igual a 1", con una cantidad promedio que pasa el tamiz N° 200 equivalente a 0.28%, valor menor al máximo permisible (Tabla 10). El peso específico, peso unitario suelto y peso unitario compactado equivale a 2225.21, 1137.69, 1196.67 kg/m3, valores que influyen en la proporción de materiales, así mismo el contenido de humedad y el porcentaje de absorción asciende a 5.06 y

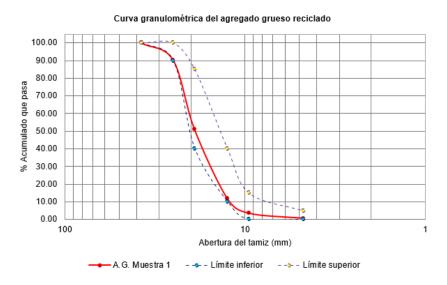
4.10%, valores que alteran la cantidad efectiva de agua. El desgaste por abrasión es 33.03% valor que cumple con los estándares normativos (NTP 400.037). Por tanto, el agregado grueso reciclado puede ser utilizado en la elaboración de concreto.

Tabla 9.

Granulometría del agregado grueso reciclado

NIO Tamin	Abertura del Tamiz — (mm)	Según N	TP 400.037	% Que Pasa Acumulado
N° Tamiz		Límite inferior	Límite Superior	Muestra 1
2"	50	100	100	100.00
1 1/2"	37.5	100	100	100.00
1"	25	90	100	90.42
3/4"	19	40	85	51.01
1/2"	12.5	10	40	11.84
3/8"	9.5	0	15	3.50
# 4	4.75	0	5	0.62

Nota: (Elaboración propia, 2019)


Tabla 10.

Propiedades físico-mecánicas del agregado grueso reciclado

Propiedad físico-mecánica	A.G. reciclado	
Tamaño máximo nominal	1"	
Porcentaje que pasa malla N° 200 (%)	0.28	
Contenido de humedad (%)	5.06	
Peso unitario suelto (kg/m3)	1137.69	
Peso unitario compactado (kg/m3)	1196.67	
Peso específico (kg/m3)	2225.21	
Porcentaje de absorción (%)	4.10	
Desgaste por abrasión (%)	33.03	

Figura 14.

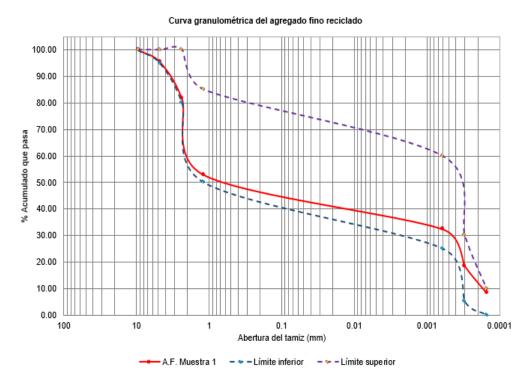
Curva granulométrica del agregado grueso reciclado

El análisis granulométrico del agregado fino reciclado (Tabla 11) cumple con el huso granulométrico de la NTP 400.037 (Fig. 15), para un módulo de finura 3.11, con una cantidad promedio que pasa el tamiz N° 200 equivalente a 6.06%, valor mayor al máximo permisible (Tabla 12). El peso específico, peso unitario suelto y peso unitario compactado influyen en la proporción de materiales, así mismo el contenido de humedad y el porcentaje de absorción asciende a 3.10 y 10.50%, valores que alteran la cantidad efectiva de agua. Por tanto, el agregado fino reciclado cumple parcialmente con los estándares normativos (NTP 400.037).

Tabla 11.

Granulometría del agregado fino reciclado

Nº Tomiz	Abertura del	Según N	% Que Pasa Acumulado	
N° Tamiz	Tamiz (mm)	Límite inferior	Límite Superior	Muestra 1
3/8"	9.5	100	100	100.00
# 4	4.75	95	100	95.48
# 8	2.36	80	100	81.64
# 16	1.18	50	85	52.89
# 30	0.0006	25	60	32.42
# 50	0.0003	5	30	18.56
# 100	0.00015	0	10	8.43


Tabla 12.

Propiedades físico-mecánicas del agregado fino reciclado

Propiedad físico-mecánica	A.F. reciclado
Módulo de finura	3.11
Porcentaje que pasa malla N° 200 (%)	6.06
Contenido de humedad (%)	3.10
Peso unitario suelto (kg/m3)	1347.45
Peso unitario compactado (kg/m3)	1450.48
Peso específico (kg/m3)	2044.10
Porcentaje de absorción (%)	1.01

Figura 15.

Curva granulométrica del agregado fino reciclado

4.1.3. Diseño de mezcla

Diseño de concreto patrón $f'c = 210 \ kg/cm^2$

Con las peculiaridades de los agregados naturales, se hizo el diseño de mezclas patrón, por el método ACI – 211. Donde se obtuvieron las proporciones mostradas en la tabla 13.

Tabla 13.

Diseño de mezclas concreto patrón

	Resumen				
	Cemento	A. Grueso	A. Fino	Agua	
Dosificación en Peso	367.12 kg	1018.11 kg	694.13 kg	206.97 lts	
Proporción de Diseño	1.00	2.77	1.89	23.96 lts	

Diseño de concreto reciclado $f'c = 210 \ kg/cm^2$

Con las peculiaridades de los agregados reciclados, se hizo el diseño de mezclas, por el método ACI – 211. Donde se obtuvieron las proporciones mostradas en la tabla 14.

Tabla 14.

Diseño de mezclas concreto reciclado

	Resumen					
	Cemento	A. Grueso	A. Fino	Agua		
Dosificación en Peso	345.63 kg	803.88 kg	707.44 kg	237.61 lts		
Proporción de Diseño	1.00	2.33	2.05	29.22 lts/bol		

Nota: (Elaboración propia, 2019)

Dosificación en peso para llenado de probetas

Para la incorporación del 10%, 25%, 50% y 75% de agregados reciclados al proporcionamiento patrón, se tuvo que retirar la misma cantidad de agregados de cantera; en cambio para el 100% de agregados reciclados se utilizó su respectivo diseño de mezclas. A continuación, se muestra los pesos utilizados para el llenado de probetas.

Tabla 15.

Dosificación en peso incorporando diferentes porcentajes de A. reciclado

		A. Cantera				Δ	. Recicl	ados	_
Diseño (RCD)	Etiqueta	Cemento (kg)	AG (kg)	AF (kg)	Agua (Its)	Cemento (kg)	AG (kg)	AF (kg)	Agua (Its)
0%	PP	37.24	103.27	70.41	22.04	-	-	-	-
10%	PP-10%	37.24	92.94	63.37	22.04	-	10.33	7.04	-
25%	PP-25%	37.24	77.45	52.81	22.04	-	25.82	17.60	-
50%	PP-50%	37.24	51.64	35.20	22.04	-	51.64	35.20	-
75%	PP-75%	37.24	25.82	17.60	22.04	-	77.45	52.81	-
100%	PR	-	-	-	-	35.06	81.54	71.76	24.10

4.1.4. Propiedades del concreto

Propiedades en estado no endurecido

Se han analizado las propiedades del concreto en estado fresco (Tabla 16), como: temperatura (°C), slump (pulg), contenido de aire (%) y densidad (gr/cm3).

- Al adicionar mayor porcentaje de RCD, la densidad disminuye en un 9.01% del concreto patrón (Fig. 16).
- El asentamiento disminuye (Fig. 17) por tanto la trabajabilidad también, pero se mantiene dentro de las propiedades aceptados por el diseño 3" a 4".
- El contenido de aire de la mezcla se incrementa ante el aumento de agregado reciclado (Fig. 18) por tanto aumenta el volumen del concreto, consecuencia de la porosidad que presenta este agregado reciclado.
- La temperatura disminuye (Fig. 19) hasta 17.80 °C, no obstante, según las NTP (339.114) la temperatura mínima del concreto para climas fríos sería 5 °C, por tanto, está acorde a los estándares normativos.

Tabla 16.

Ensayos al concreto en estado fresco

Diseño	Slump	Temperatura	C. de aire	Densidad
Diseno	(pulg)	(°C)	(%)	(gr/cm3)
D. Patrón - 0% RCD	3 3/4	20.90	2.10	2.33
D1 - 10% RCD	3 1/2	20.80	2.20	2.31
D2 - 25% RCD	3 1/2	20.60	2.30	2.30
D3 - 50% RCD	3 1/4	19.80	2.40	2.26
D4 - 75% RCD	3 1/4	19.10	2.50	2.19
D5 - 100% RCD	3	17.80	2.80	2.12

Figura 16.

Densidad (gr/cm3) de la mezcla de concreto

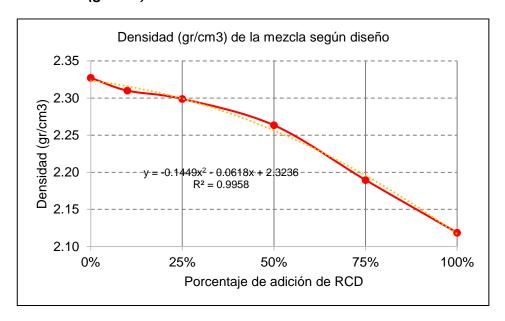


Figura 17.

Asentamiento (pulg) de la mezcla de concreto

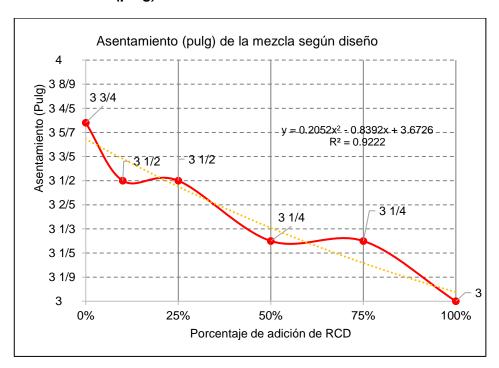


Figura 18.

Contenido de aire (%) de la mezcla de concreto

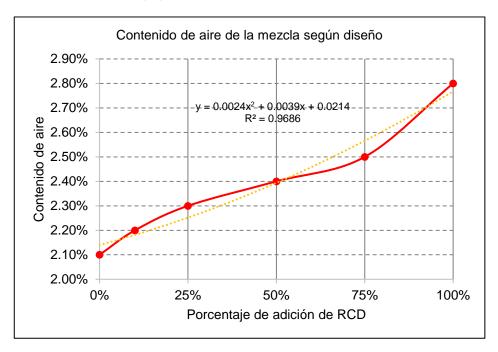
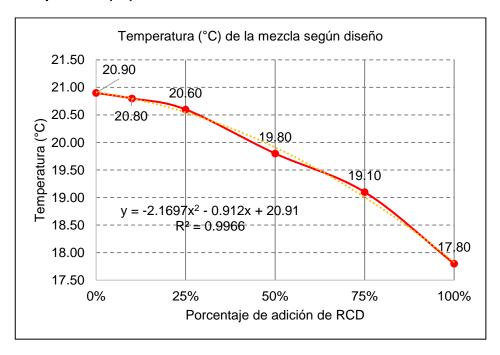



Figura 19.

Temperatura (°C) de la mezcla de concreto

Propiedades en estado endurecido

Se ensayaron especímenes de concreto con 0%, 10%, 25%, 50%, 75% y 100% (Fig. 20, Fig. 22, Fig. 24, Fig. 26, Fig. 28, Fig. 30). Para obtener las resistencias promedio se descartaron los valores extremos, obteniendo resistencias características que mantienen los coeficientes de variación según la NTP 339.034 (Tabla 17, Tabla 18, Tabla 19, Tabla 20, Tabla 21, Tabla 22), así mismo, a los 28 días todos los especímenes superan la resistencia de diseño $f'c = 210 \ kg/cm^2$ (Fig. 21, Fig. 23, Fig. 25, Fig. 27, Fig. 29, Fig. 31).

Tabla 17.

Resistencia a la compresión en concreto con 0% de RCD

Resistencia a la compresión (kg/cm2)	7 días	14 días	28 días
M1	222.20	228.80	275.80
M2	229.40	270.80	300.60
M3	228.80	254.50	285.00
M4	230.80	257.80	294.90
M5	231.00	262.60	293.80
Promedio	228.44	261.43	290.02
Desviación estándar	3.61	7.08	9.71
Coeficiente de variación	1.58%	2.71%	3.35%

Nota: (Elaboración propia, 2019)

Tabla 18.

Resistencia a la compresión en concreto con 10% de RCD

Resistencia a la compresión (kg/cm2)	7 días	14 días	28 días
M1	211.40	256.20	305.70
M2	252.68	250.60	281.70
M3	225.60	254.00	283.10
M4	216.70	252.40	289.40
M5	224.80	283.10	288.70
Promedio	219.63	253.30	285.73
Desviación estándar	6.80	2.38	3.89
Coeficiente de variación	3.10%	0.94%	1.36%

Tabla 19.

Resistencia a la compresión en concreto con 25% de RCD

Resistencia a la compresión (kg/cm2)	7 días	14 días	28 días
M1	253.70	239.80	264.10
M2	195.50	296.70	255.90
M3	204.40	230.50	275.80
M4	200.80	247.40	281.90
M5	209.10	236.40	300.60
Promedio	202.45	238.53	269.43
Desviación estándar	5.75	7.05	11.66
Coeficiente de variación	2.84%	2.96%	4.33%

Tabla 20.

Resistencia a la compresión en concreto con 50% de RCD

Resistencia a la compresión (kg/cm2)	7 días	14 días	28 días
M1	216.40	225.40	214.20
M2	195.60	221.30	224.20
M3	200.30	219.20	240.50
M4	198.10	211.40	245.80
M5	173.30	170.40	250.70
Promedio	191.83	219.33	240.30
Desviación estándar	12.50	5.88	11.51
Coeficiente de variación	6.52%	2.68%	4.79%

Nota: (Elaboración propia, 2019)

Tabla 21.

Resistencia a la compresión en concreto con 75% de RCD

Resistencia a la compresión (kg/cm2)	7 días	14 días	28 días
M1	166.50	203.80	248.30
M2	226.30	258.50	219.70
M3	167.70	214.90	226.30
M4	172.50	199.40	231.70
M5	163.50	211.20	230.40
Promedio	167.55	207.33	231.28
Desviación estándar	26.47	23.68	10.60
Coeficiente de variación	15.80%	11.42%	4.58%

Tabla 22.

Resistencia a la compresión en concreto con 100% de RCD

Resistencia a la compresión (kg/cm2)	7 días	14 días	28 días
M1	156.20	247.00	239.40
M2	156.40	201.40	223.70
M3	170.40	214.40	247.00
M4	164.20	215.20	227.10
M5	184.70	220.90	234.90
Promedio	166.38	212.98	234.42
Desviación estándar	11.83	8.24	9.38
Coeficiente de variación	7.11%	3.87%	4.00%

Figura 20.

Promedio de la resistencia axial del concreto con 0% RCD

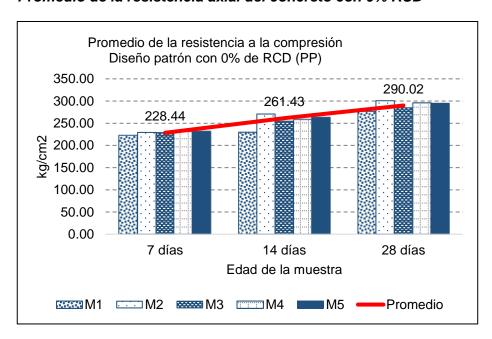


Figura 21.

Resistencia axial a los 28 días del concreto con 0% RCD

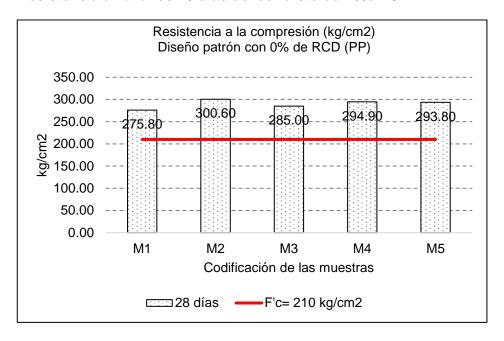


Figura 22.

Promedio de la resistencia axial del concreto con 10% RCD

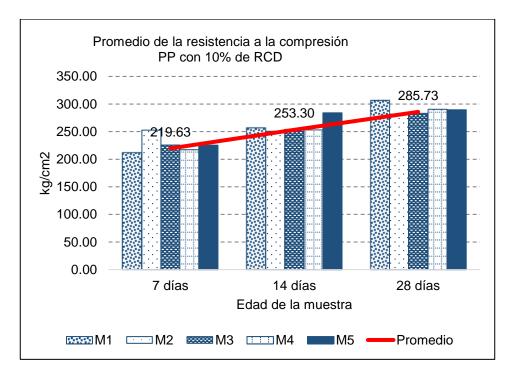


Figura 23.

Resistencia axial a los 28 días del concreto con 10% RCD

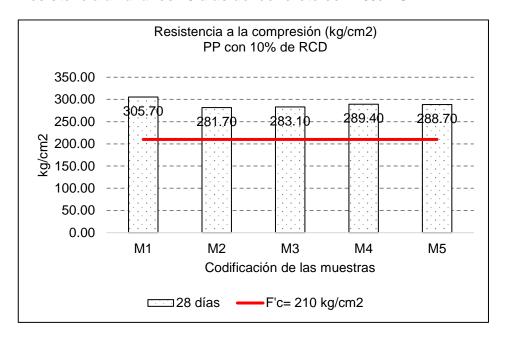


Figura 24.

Promedio de la resistencia axial del concreto con 25% RCD

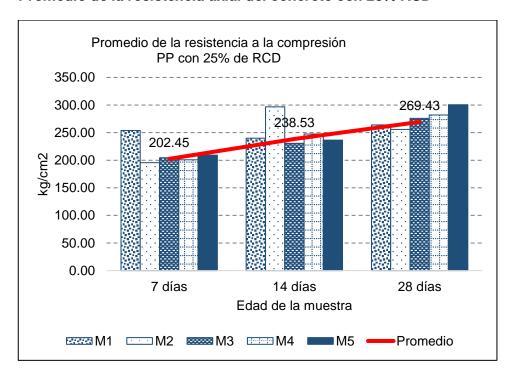


Figura 25.

Resistencia axial a los 28 días del concreto con 25% RCD

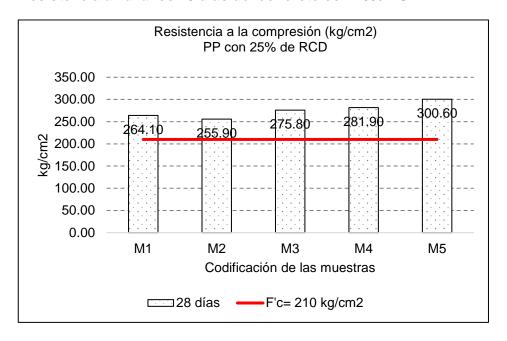


Figura 26.

Promedio de la resistencia axial del concreto con 50% RCD

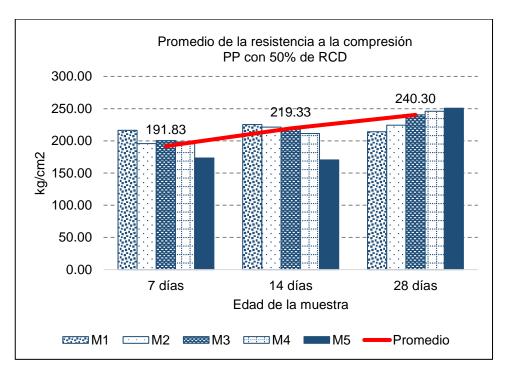


Figura 27.

Resistencia axial a los 28 días del concreto con 50% RCD

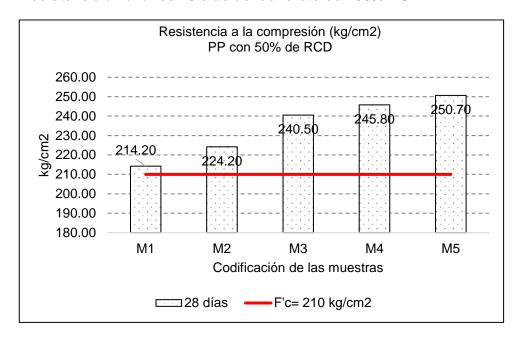


Figura 28.

Promedio de la resistencia axial del concreto con 75% RCD

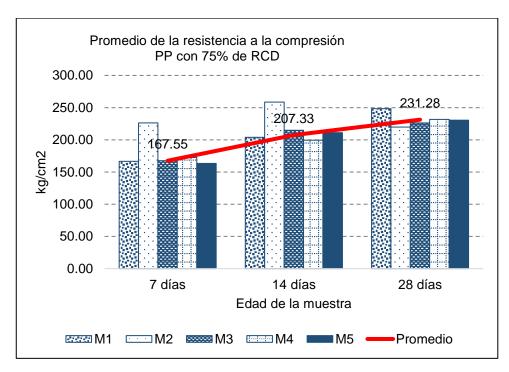


Figura 29.

Resistencia axial a los 28 días del concreto con 75% RCD

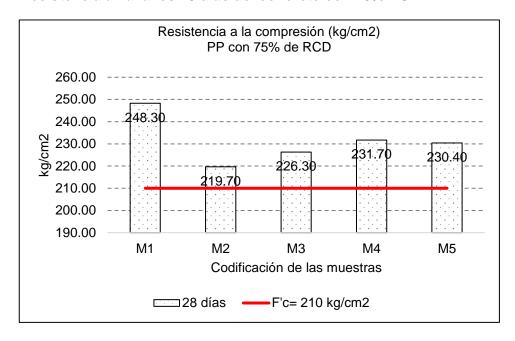


Figura 30.

Promedio de la resistencia axial del concreto con 100% RCD

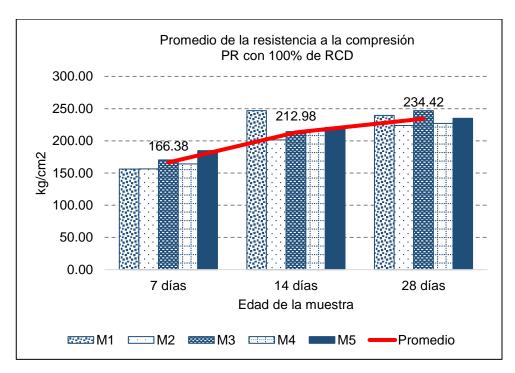
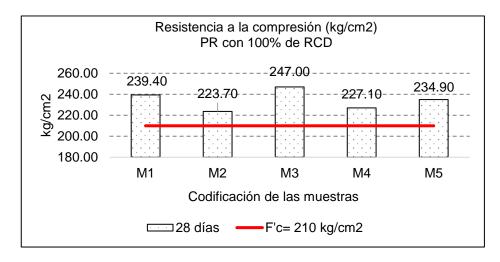
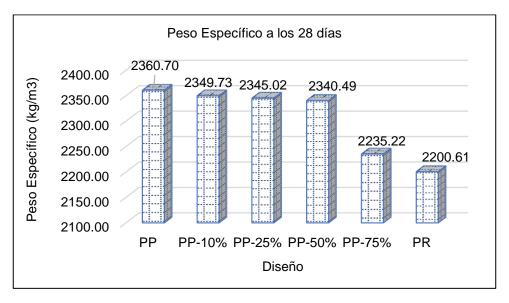



Figura 31.


Resistencia axial a los 28 días del concreto con 100% RCD

A medida que se fue incorporando agregados reciclados al diseño patrón de concreto, el peso específico promedio del concreto a los 28 días disminuyo, y al utilizar el 100% de agregado reciclado este alcanzó solo el 93.22% del peso específico del diseño patrón. El peso específico del concreto generalmente varía de 2200 a 2400 kg/m3 (Fig. 32).

Figura 32.

Peso específico del concreto a los 28 días

4.2. Discusión de resultados

4.2.1. Propiedades de los agregados

En la Tabla 23 y 24, se presentan las propiedades de los agregados fino y grueso en su estado natural y reciclado.

La gradación de los agregados es aceptable según los requisitos de la NTP 400.037; el agregado fino reciclado presenta gran cantidad de material que pasa la malla N° 4, 8, 16, 30 y que se acumula en las mallas N° 50 y 100, valores que se reflejan en su elevado módulo de finura; así mismo, el agregado grueso reciclado fue procesado en la chancadora mecánica y se tamizó por malla de 3/8" para separar el material fino, y verificar que este cumpliese con las propiedades granulométricos impuestos en la NTP 400.037; no obstante, la diferencia granulométrica del tamaño máximo nominal entre el agregado grueso natural y reciclado de ¾" y 1" respectivamente, esto debido a que el agregado reciclado está compuesto por roca con adherencia de cemento y arena, lo que determina también su textura redondeada, en cambio el agregado de cantera tiene forma angular, ya que solo es roca chancada.

El peso específico del agregado reciclado fino representa el 78.76% del agregado de la cantera, lo que determina que esté presente alto contenido de poros, y, por tanto, una mayor absorción (10.5%) a comparación del agregado de cantera (1.01%) que es un valor aceptable. Así mismo, el agregado grueso también presenta un menor peso específico llegando a representar el 85.75 % del agregado de cantera, lo que también genera un incremento de su absorción en 3.42% más que el agregado de cantera que tiene un valor de absorción que equivale a 0.68%.

El peso unitario suelto del agregado fino y grueso reciclado es menor que el agregado de cantera llegando a representar el 88.92% y 82.48% del P.U. suelto respectivamente. El P.U. variado de los agregados reciclados también es menor a comparación de los agregados de cantera, significando el 91.15% del peso compactado del agregado fino y el 78.22% del peso compactado del agregado grueso. Esta disminución de los pesos unitarios de los materiales reciclados se debe a la presencia de mortero adherido.

Los agregados finos de cantera y reciclado tienen un contenido de humedad de 1.43% y 3.10% respectivamente, se puede apreciar una gran diferencia, pero esto dependerá del lugar donde se almacene los materiales y del clima que se tenga en la localidad. El agregado grueso de cantera y reciclado tienen un contenido de humedad de 0.20% y 5.06%, se puede apreciar un 2530.00% más de humedad por parte del agregado reciclado, esto se debe al mayor contenido de vacíos en el mortero adherido en la piedra.

La abrasión del agregado grueso natural y reciclado, asciende respectivamente a 22.04% y 33.03%. SI bien el agregado grueso reciclado presenta un mayor porcentaje de desgaste que el agregado grueso natural, este es sigue cumpliendo con la resistencia estipulada por la norma C.E. 010 Pavimentos Urbanos que indica "La abrasión para los agregados gruesos de mezclas asfálticas es 35% a una altitud menor a 3000 msnm y 40% con altitud mayor a 3000 msnm, además para base granular se acepta un 40% de desgaste y para sub base un 50% de desgaste como máximo".

Tabla 23.

Propiedades del agregado fino natural y reciclado

Propiedad	A. Fino Cantera	A. Fino Reciclado
Procedencia	Conchan	Av. Inca G. V.
Módulo de finura	2.36	3.11
Peso Unitario Suelto (kg/m3)	1515.28	1347.45
Peso Unitario Compactado (kg/m3)	1591.25	1450.48
Peso específico (gr/cm3)	2.59	2.04
Cantidad que pasa malla #200 (%)	3.18%	6.06%
Absorción (%)	1.01%	10.50%
Humedad (%)	1.43%	3.10%

Tabla 24.

Propiedades del agregado grueso natural y reciclado

Propiedad	AG Cantera	AG Reciclado
Procedencia	San Juan del Suro	Av. Inca G. V.
Tamaño Máximo Nominal	3/,"	1"
Peso Unitario Suelto (kg/m3)	1379.42	1137.69
Peso Unitario Compactado (kg/m3)	1529.80	1196.67
Peso específico (kg/m3)	2595.10	2225.21
Desgaste por abrasión (%)	22.04%	33.03%
Cantidad que pasa malla #200 (%)	0.88%	0.28%
Absorción (%)	0.68%	4.10%
Humedad (%)	0.20%	5.06%

4.2.2. Comparación técnica del concreto

Al comparar la resistencia axial promedio a los 7, 14 y 28 días de las muestras patrón (PP-0%) con los especímenes con 10% de RCD estos representan el 96.15%, 96.90% y 98.55% de la resistencia patrón (Fig. 33); los especímenes con 25% de RCD representan el 88.66%, 91.24% y 92.93% de la resistencia patrón (Fig. 34); los especímenes con 50% de RCD representan el 83.97%, 83.89% y 82.87% de la resistencia patrón (Fig. 35); los especímenes con 75% de RCD representan el 73.38%, 79.30% y 79.76% de la resistencia patrón (Fig. 36); y los especímenes con 100% de RCD representan el 72.85%, 81.48% y 80.85% de la resistencia patrón (Fig. 37), valores similares a los alcanzados por otros autores (Montoya, 2014; Sumari, 2016; Olaya y Rojas, 2020; Díaz, 2020)

Figura 33.

Comparación de resistencia axial de PP y PP-10%

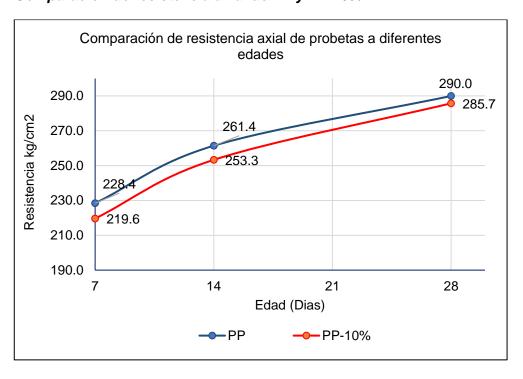


Figura 34.

Comparación de resistencia axial de PP y PP-25%

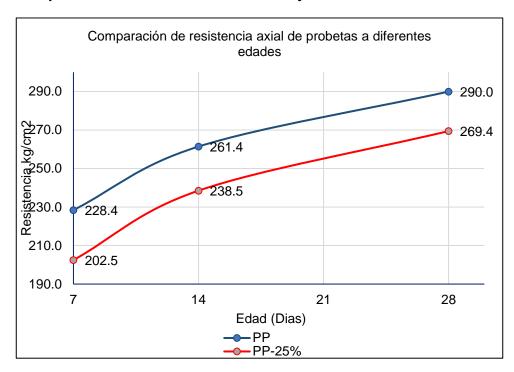


Figura 35.

Comparación de resistencia axial de PP y PP-50%

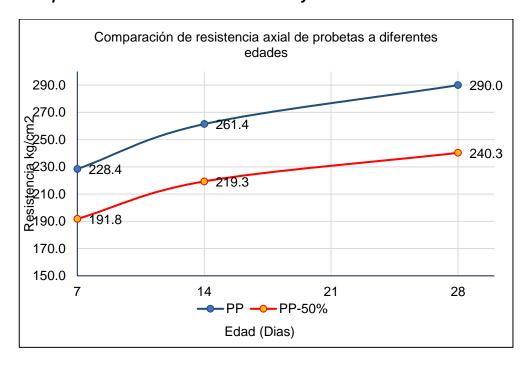


Figura 36.

Comparación de resistencia axial de PP y PP-75%

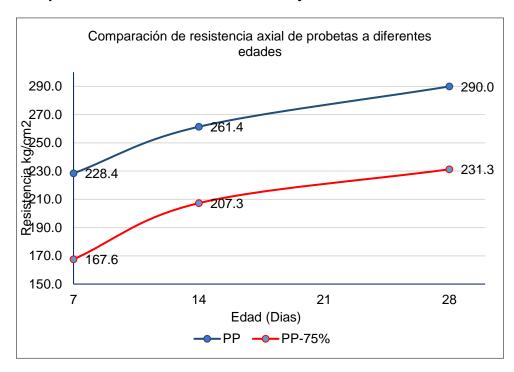
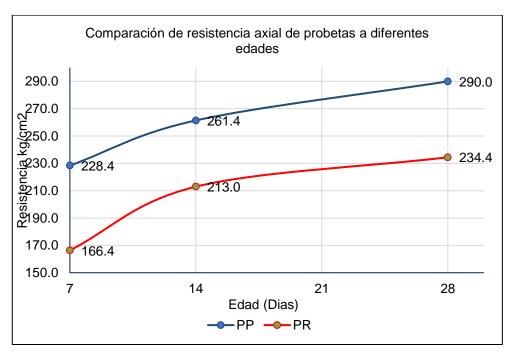



Figura 37.

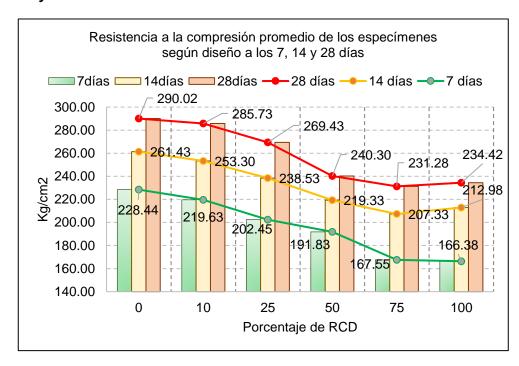
Comparación de resistencia axial de PP y PR-100%

La resistencia a la compresión promedio se incrementa según la edad de los especímenes (Tabla 25) pero disminuye según se incrementa el porcentaje de adición de agregados reciclados de RCD (Fig. 38).

Tabla 25.

Resistencia a la compresión promedio de los especímenes a los 7,

14 y 28 días


Descripción	% de adición de RCD	Resist	mpresión	
	KOD -	7 días	28 días	
PP	0	228.44	261.43	290.02
PP-10%	10	219.63	253.30	285.73
PP-25%	25	202.45	238.53	269.43
PP-50%	50	191.83	219.33	240.30
PP-75%	75	167.55	207.33	231.28
PR	100	166.38	212.98	234.42

Nota: (Elaboración propia, 2019)

Figura 38.

Resistencia a la compresión promedio de los especímenes a los 7,

14 y 28 días

En todos los casos la adición de agregado reciclado en la mezcla cementante generó una caída en la resistencia a la compresión. A los 28 días los especímenes con 10%, 25%, 50%, 75% y 100% del agregado reciclado por RCD, tiene un porcentaje de disminución de la resistencia respecto al diseño patrón (PP) de 1.45%, 7.07%, 17.13%, 20.24% y 19.15% (Tabla 26). No obstante, las resistencias axiales a los 28 días no son inferiores a la resistencia de diseño, pero si presenta una caída según porcentaje de agregado reciclado adicional (Fig. 39), esto se debe a la calidad de los agregados reciclados (RCD), que presentan un mayor grado de poros, lo que genera también una disminución en el peso específico que va de 2,360.70 kg/m3 para especímenes con 10% RCD hasta 2,200.61 para especímenes con 100% RCD (PR), generando concretos más livianos (Fig. 40). Es decir, es viable técnicamente el uso de agregados reciclados de RCD para la elaboración de concreto f'c= 210 kg/cm².

Tabla 26.

Comparación de resistencia a la compresión a los 28 días

Descripción	Resistencia a los 28 días	% respecto a PP	% disminución de resistencia
PP	290.0	100.00%	0.00%
PP-10%	285.7	98.55%	1.45%
PP-25%	269.4	92.93%	7.07%
PP-50%	240.3	82.87%	17.13%
PP-75%	231.3	79.76%	20.24%
PR	234.4	80.85%	19.15%

Figura 39.

Curva de compresión axial de diferentes porcentajes de agregado reciclado de RCD, a los 28 días

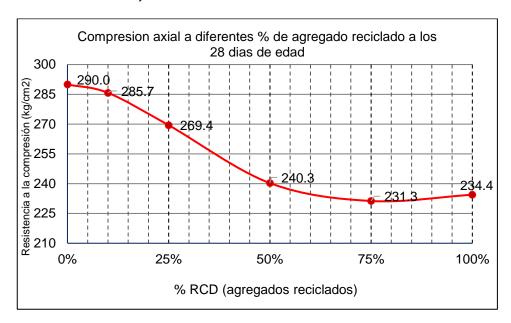
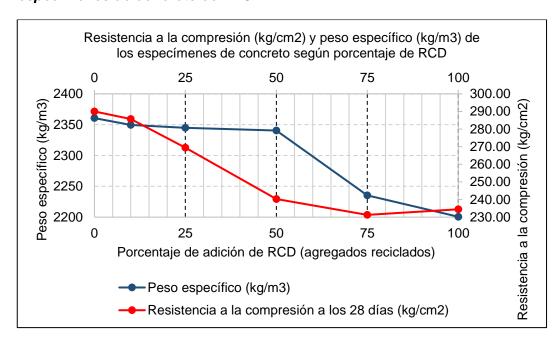



Figura 40.

Resistencia a la compresión y peso específico a los 28 días de los especímenes de concreto con RCD

4.2.3. Comparación económica del concreto

El costo de 1 m3 de concreto dependerá del costo de los agregados, ya que lo demás componentes del concreto no variaran. En la Tabla 27 y Tabla 28 se especifica el costo de producción de los agregados reciclados; el costo de los materiales de cantera que ya son estándares en la zona y ascienden a S/. 60.00 para agregado fino y S/. 65.00 para agregado grueso. Por tanto, el material fino reciclado presenta un costo de S/. 14.84 menos por 1 m3 que el agregado de cantera, y de S/. 11.84 menos por 1 m3 en el agregado grueso. Sin duda que reciclar concreto y procesarlos para obtener agregados conlleva a un costo mucho menor a cada m3 de concreto.

Tabla 27.

Precio de transformación de los RCD a agregado fino reciclado

Rendimiento	m3/día	50.00		EQ	75.00
Descripción del recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de obra					_
Operario	hh	1.000	0.160	20.190	3.230
Peón	hh	4.000	0.640	14.910	9.542
					12.773
Equipos					
Herramientas manuales	%mo		3.000	12.773	0.383
Chancadora	hm	1.000	0.107	50.000	5.333
Cargador frontal	hm	1.000	0.107	180.000	19.200
Transporte de material					
volquete 10 m3	hm	1.000	0.107	70.000	7.467
					32.383
		(Costo unita	rio directo:	45.16

Tabla 28.

Precio de transformación de los RCD a agregado grueso reciclado

Rendimiento	m3/día	50.00		EQ	60.00
Descripción del recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de obra					
Operario	hh	1.000	0.160	20.190	3.230
Peón	hh	4.000	0.640	14.910	9.542
					12.773
Equipos					
Herramientas manuales	%mo		3.000	12.773	0.383
Chancadora	hm	1.000	0.133	50.000	6.667
Cargador frontal	hm	1.000	0.133	180.000	24.000
Transporte de material					
volquete 10 m3	hm	1.000	0.133	70.000	9.333
					40.383
			Costo unita	rio directo:	53.16

En las tablas 29, 30, 31, 32, 33 y 34 se detalla el costo de los materiales para cada mezcla cementante realizada con 0%, 10%, 25%, 50%, 75% y 100% de agregados reciclados obtenidos a partir de RCD, teniendo en cuenta la cantidad de agregados de cantera y agregados reciclados para $1 \, m^3 \, de \, concreto$.

Tabla 29.

Costo de materiales para 1 m3 de concreto con 0% de agregados reciclados de RCD

Materiales para 1 m3	Und	Cantidad	Precio S/.	Parcial S/.
Cemento	bol	8.638	24.500	211.634
A. fino- cantera	m3	0.268	60.000	16.068
A. grueso- cantera	m3	0.392	65.000	25.501
A. fino- reciclado	m3	0.000	45.156	0.000
A. grueso- reciclado	m3	0.000	53.156	0.000
Agua	m3	0.207	5.000	1.035
Precio de materiales para 0% de agregados reciclados (RCD)				254.238

Tabla 30.

Costo de materiales para 1 m3 de concreto con 10% de agregados reciclados de RCD

Materiales para 1 m3	Und	Cantidad	Precio S/.	Parcial S/.
Cemento	bol	8.638	24.500	211.634
A. fino- cantera	m3	0.241	60.000	14.461
A. grueso- cantera	m3	0.353	65.000	22.951
A. fino- reciclado	m3	0.034	45.156	1.533
A. grueso- reciclado	m3	0.046	53.156	2.432
Agua	m3	0.207	5.000	1.036
Precio de materiales para 10% de agregados reciclados (RCD)				254.048

Tabla 31.

Costo de materiales para 1 m3 de concreto con 25% de agregados reciclados de RCD

Materiales para 1 m3	Und	Cantidad	Precio S/.	Parcial S/.
Cemento	bol	8.638	24.500	211.634
A. fino- cantera	m3	0.201	60.000	12.051
A. grueso- cantera	m3	0.294	65.000	19.126
A. fino- reciclado	m3	0.085	45.156	3.834
A. grueso- reciclado	m3	0.114	53.156	6.080
Agua	m3	0.207	5.000	1.036
Precio de materiales	para 25%	de agregados	reciclados (RCD)	253.761

Nota: (Elaboración propia, 2019)

Tabla 32.

Costo de materiales para 1 m3 de concreto con 50% de agregados reciclados de RCD

Materiales para 1 m3	Und	Cantidad	Precio S/.	Parcial S/.
Cemento	bol	8.638	24.500	211.634
A. fino- cantera	m3	0.134	60.000	8.034
A. grueso- cantera	m3	0.196	65.000	12.750
A. fino- reciclado	m3	0.170	45.156	7.667
A. grueso- reciclado	m3	0.229	53.156	12.160
Agua	m3	0.207	5.000	1.036
Precio de materiales ¡	oara 50% (de agregados i	reciclados (RCD)	253.282

Tabla 33.

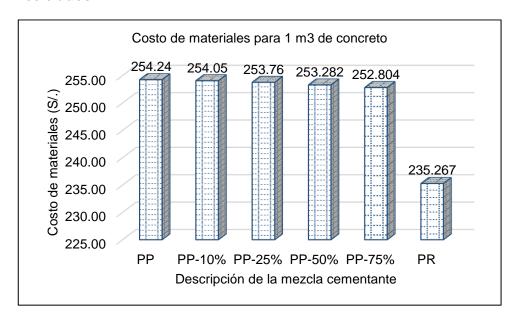
Costo de materiales para 1 m3 de concreto con 75% de agregados reciclados de RCD

Materiales para 1 m3	Und	Cantidad	Precio S/.	Parcial S/.
Cemento	bol	8.638	24.500	211.634
A. fino- cantera	m3	0.067	60.000	4.017
A. grueso- cantera	m3	0.098	65.000	6.375
A. fino- reciclado	m3	0.255	45.156	11.501
A. grueso- reciclado	m3	0.343	53.156	18.240
Agua	m3	0.207	5.000	1.036
Precio de materiales para 75% de agregados reciclados (RCD) 252.804				

Tabla 34.

Costo de materiales para 1 m3 de concreto con 100% de agregados reciclados de RCD

Materiales para 1 m3	Und	Cantidad	Precio S/.	Parcial S/.
Cemento	bol	8.132	24.500	199.246
A. fino- cantera	m3	0.000	60.000	0.000
A. grueso- cantera	m3	0.000	65.000	0.000
A. fino- reciclado	m3	0.346	45.156	15.628
A. grueso- reciclado	m3	0.361	53.156	19.203
Agua	m3	0.238	5.000	1.190
Precio de materiales para 100% de agregados reciclados (RCD)				235.267


Nota: (Elaboración propia, 2019)

Al utilizar mayor cantidad de agregados reciclados para la elaboración de las mezclas cementantes, el precio o costo de los materiales también disminuye (Fig. 41) por tanto el costo del m3 de concreto también es menor. Pero al correlacionar el costo de los materiales para 1m3 de concreto con la resistencia a la compresión alcanzada por los especímenes elaborados con adición de 0, 10, 25, 50, 75 y 100% de agregados reciclados (Fig. 42) se determinó el costo beneficio de la propuesta (Tabla 35), concluyendo que es

económicamente viable el uso de agregados reciclados para la elaboración de concreto f'c= 210 kg/cm2.

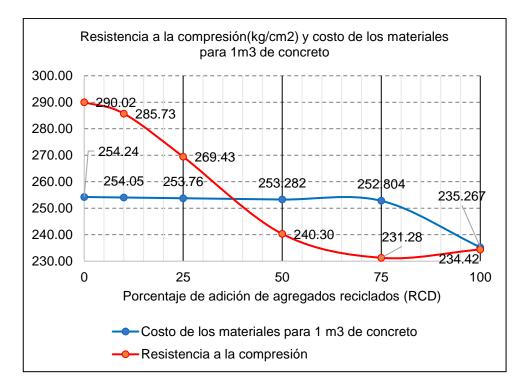
Figura 41.

Costo de materiales para 1 m3 de concreto con agregados reciclados

Nota: (Elaboración propia, 2019)

Tabla 35.

Costo/beneficio del concreto con agregados reciclados de RCD


Descripción	Porcentaje de adición de RCD (%)	Costo de los materiales para 1 m3 de concreto	Resistencia a la compresión	Costo/ beneficio Rc	
PP	0	254.24	290.02	0.877	
PP-10%	10	254.05	285.73	0.889	
PP-25%	25	253.76	269.43	0.942	
PP-50%	50	253.282	240.30	1.054	
PP-75%	75	252.804	231.28	1.093	
PR	100	235.267	234.42	1.004	

Nota: (Elaboración propia, 2019)

Figura 42.

Resistencia a la compresión (kg/cm2) y costo de los materiales para

1m3 de concreto

Nota: (Elaboración propia, 2019)

4.2.4. Impacto ambiental

El medio ambiente se tomó en cuenta como un factor más en el desarrollo del proyecto. Conocer el impacto ambiental que tiene como consecuencia, es el factor que no se puede dejar de lado y así ver que no afecte la calidad del ambiente. El análisis del impacto ambiental se realizó a través de la Matriz de Leopold, la cual se observa en la tabla 36.

Tabla 36. Matriz de Leopold

		AIRE		RE	AGUA				SUELO			PAISAJE		SOCIOECONÓMICO			SÍNTESIS		S			
ELABORADO DE CONS	I DEL CONCRETO CON RESIDUOS STRUCCIÓN Y N, CHOTA, 2018	COMPONENTES DEL AMBIENTE	p	ción de partículas	Sedimentación de ríos	וק	lez	dad	p	uos contaminantes	ción de	lad			Salidad visual	del concreto	Q	ación de canteras	N° I INTERAC			Σ
	TES Y ACCIONES ROYECTO	S	Calidad	Esparción	Sedim	Calidad	Turbidez	Toxicidad	Calidad	Residuos	Reducción	Fertilidad	Flora	Fauna	Calida	Costo del	Empleo	Explotación	-	+	-	+
RECICLAJE	Reciclaje de RCDs.	,	+5 5		+9 8	+9	+4 5	+8 9	+7 /8	+9 9	+3	+9 9	+4 5	+3 5	+7	+5/7	+7 8	+6 8	0	15		+95 108
	Carga, movilización descarga de RCDs.		-4/ /3	-3/ /2					+3/ /2	-2/ /2	-1/ /3	+4/3	+3⁄3	+2 /1	+5 6		+8 7		4	6	-10 10	+25 21
CIÓN	Lavado de RCDs.					-4/ 2	-5/ 2	74/33									+5 6		3	1	-11 /7	+5/6
TRANSFORMACIÓN	Chancado de RCDs	S.	-5/3	-5/ 2												+5/8	+5 6	+8 6	2	3	-10 5	+18 20
TRANS	Tamizado de agreg fino y grueso recicla		-4/ /1	-5/ 2												+5 8	+5 6	+8 6	2	3	<u>-9</u> /3	+18 20

UTILIZACIÓN	Concreto con Agreç Reciclado	gado														+8 9	+3 5	+8 7	0	3	0/0	+19 21
	N° DE	-	3	3	0	1	1	1	0	1	1	0	0	0	0	0	0	0	11			
	INTERACCIONES	+	1	0	1	1	1	1	2	1	1	2	2	2	2	4	6	4		31		
SÍNTESIS	5	-	-/ 1/3 7	-13 6	0	-4/ 2	-5/ 2	-2/ 3		-2 2	-1/ /3	0	<i>8</i>	00	0/	0	0	0			-40 25	
	_	+	+5 5	9	+9 /8	+9 9	+4 5	+8 9	+10 10	/	+3 /7	+13 12	/	+5/6	/	+23 32	+33 38	+30 27				+180 196
PRO	OMEDIO																			.64 27		5,81 .32

Nota: (Elaboración propia, 2019)

En la Tabla 36, se tomó todos los factores ambientales probables a la contaminación al momento de reciclar y procesar los RCD, donde interpretando los promedios finales tenemos que con un valor de - 3.64/2.27 hay una baja magnitud de contaminación sin importancia, y con +5.81/6.32 hay una mediana magnitud de descontaminación y medianamente importante, y esto significa una gran ayuda para el medio ambiente, esto se debería a que la tesis está enfocada en reciclar y reutilizar concretos que están destinados a botaderos o incluso abandonados a orillas de los ríos.

4.2.5. Análisis estadístico ANOVA

Para el análisis estadístico de la varianza (ANOVA) se utilizó el software Minitab*19, con el fin de aseverar la hipótesis nula (Ho) o aceptar la hipótesis alternativa (H1). Si el valor-p es menos que el nivel de significancia (0.05) rechazamos Ho, pero si el valor-p es mayor que el nivel de significancia aceptamos Ho.

Ho: No hay diferencia significativa en las mediciones de resistencia a la compresión entre diseños.

H1: Si hay diferencia significativa en las mediciones de resistencia a la compresión entre diseños.

Tabla 37

Datos de resistencia a la compresión para análisis estadístico

ANOVA

		EDAD	
Diseño	7 días	14 días	28 días
	222.2	228.8	275.8
	229.4	270.8	300.6
0%	228.8	254.5	285
	230.8	257.8	294.9
	231	262.6	293.8
	211.4	256.2	305.7
	252.68	250.6	281.7
10%	225.6	254	283.1
	216.7	252.4	289.4
	224.8	283.1	288.7
	253.7	239.8	264.1
	195.5	296.7	255.9
25%	204.4	230.5	275.8
	200.8	247.4	281.9
	209.1	236.4	300.6
	216.4	225.4	214.2
	195.6	221.3	224.2
50%	200.3	219.2	240.5
	198.1	211.4	245.8
	173.3	170.4	250.7
	166.5	203.8	248.3
	226.3	258.5	219.7
75%	167.7	214.9	226.3
	172.5	199.4	231.7
	163.5	211.2	230.4
	156.2	247	239.4
	156.4	201.4	223.7
100%	170.4	214.4	247
	164.2	215.2	227.1
	184.7	220.9	234.9

Nota: (Elaboración propia, 2020)

Tabla 38

Análisis de varianza en software Minitab*19

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
DISEÑO	5	40288	8057.5	95.25	0.000
EDAD	2	51295	25647.4	303.18	0.000
Error	70	5922	84.6		
Falta de ajuste	10	1277	127.7	1.65	0.114
Error puro	60	4645	77.4		
Total	77	96649			

Nota: (Elaboración propia, 2020)

Tabla 39

Resumen de modelo estadístico Minitab*19

S	R-cuad.	R-cuad.	R-cuad.
		(ajustado)	(pred)
9.19754	93.87%	93.26%	92.42%

Nota: (Elaboración propia, 2020)

En la tabla 38 el valor-p es 0.00 y es mucho menor que el valor de significancia de 0.05, por lo tanto, rechazamos la hipotesis nula (Ho) y aceptamos la hipotesis alternativa (H1); por lo tanto, si hay diferencia significativa en las mediciones de resistencia a la compresión entre diseños.

En la tabla 39 la medida estadística R-cuadrado es igual a 93.89%, lo que nos indica una alta confiabilidad de las mediciones hechas y que el modelo estadístico se ajusta a los datos. El R-cuadrado ajustado nos indica que tenemos un 93.26% de variación de la variable dependiente.

CAPÍTULO V.

CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- 1) Los agregados reciclados presentan una granulometría con mayor cantidad de finos, representando el 131.78% del módulo de finura del agregado de cantera, no obstante, los agregados cumplen con los usos granulométricos especificados en la NTP 400.037. El peso específico y absorción del agregado fino reciclado representa el 78.76% y 939.60% del agregado de cantera, mientras que del agregado grueso reciclado representa el 85.75% y 502.94% del agregado de cantera. El peso unitario suelto y variado del agregado fino reciclado representa un 88.92% y 91.15% del agregado de cantera y en el agregado grueso reciclado representa un 82.48% y 78.22% del agregado de cantera. La resistencia al desgaste (abrasión) del agregado reciclado es 33.03% frente a un 22.04% del agregado grueso de cantera.
- 2) La proporción de diseño para concreto convencional f'c= 210 kg/cm2 asciende a 1:2.77:1.89 de cemento: AG: AF y 23.96 litros de agua por bolsa de cemento. Para el diseño de mezcla con agregado reciclado de RCD se necesitó el 15.88% menos de agregado grueso, 8.47% más de agregado fino y 21.95% más de agua, que el diseño de mezcla patrón.
- 3) El concreto elaborado con agregado reciclado, presenta viabilidad técnica, económica y ambiental. Con la adición de agregado reciclado, el concreto elaborado logra cumplir la resistencia de diseño ACI-211 con f'c= 210 kg/cm2. El concreto elaborado con agregado

reciclado logra un menor precio de los materiales por m3 de concreto hasta del 7.46% respecto al concreto convencional, así mismo el uso de RCD para elaborar concreto genera una mediana magnitud de descontaminación del medio ambiente.

5.2. Recomendaciones

- 1) Según se incrementa el porcentaje de agregado reciclado va disminuyendo la manejabilidad de la mezcla de concreto debido a sus características del mismo. Por tanto, se recomienda utilizar un aditivo plastificante teniendo en cuenta el porcentaje de agregado reciclado que se está utilizando.
- 2) Realizar el análisis de los agregados combinando tanto los agregados de concreto reciclado y naturales, utilizando hasta un máximo de 25% de agregado reciclado y obtener la dosificación optima de estos para mantener la resistencia axial del concreto convencional.
- 3) Puede ser usado para concretos simples y concretos ciclópeos y ver la posibilidad de instalar una planta procesadora de agregados reciclados y a si disminuir mucho más los costos de producción de estos agregados.
- 4) Esta tesis es una pequeña parte de una extensa investigación sobre la reutilización de RCD triturados como agregados reciclados en nuestro País, se deberían hacer estudio por cada tipo de concreto reciclado y de acuerdo a las resistencias que estos concretos fueron diseñados, así como también por cada tipo de resistencia que deseamos obtener, con el fin de ajustarlas a nuestro país o utilizar agregados reciclados provenientes de cualquier fuente.

CAPÍTULO VI.

REFERENCIAS BIBLIOGRÁFICAS

- Aldana, J. y Serpell, A. (2012). Temas y tendencias sobre residuos de construcción y demolición: un metaanálisis. *Revista de la construcción*, 11(2), 4-16. http://dx.doi.org/10.4067/S0718-915X2012000200002
- Amat, J. (2016, enero). ANOVA análisis de varianza para comparar múltiples medias. Ciencia de datos.

 https://www.cienciadedatos.net/documentos/19 anova
- Asencio, A. R. (2014). Efectos de los agregados de concreto reciclado en la resistencia a la compresión sobre el concreto f'c=210kg/cm2 [Tesis de Pregrado, Universidad Nacional de Cajamarca].

 http://repositorio.unc.edu.pe/handle/UNC/493
- Castaño, J.O., Rodríguez, R.M., Lasso, L.A., Gómez, A., y Ocampo, M.S. (2013).

 Gestión de residuos de construcción y demolición (RCD) en Bogotá:

 perspectivas y limitantes. *Tecnura*, 17(38), 121-129.

 https://doi.org/10.14483/udistrital.jour.tecnura.2013.4.a09
- Comité ACI 211,1. (2002). Práctica estándar para la selección de las proporciones para concreto de peso normal, peso pesado, y en concreto masivo.
- Comité ACI 555R 01. (2002). La eliminación y reutilización de concreto endurecido.
- Cruz, J. A., & Velásquez. R. (2004). Concreto reciclado [Tesis de Pregrado., Instituto Politécnico Nacional México].
 https://tesis.ipn.mx/handle/123456789/4860

- Díaz, L.G. (2020). Aprovechamiento de los residuos de construcción y demolición (RCD) en la elaboración de concretos en Colima. [Tesis de maestría, Tecnológico Nacional de México]
- García, L.A. (2004). Aplicación del análisis multicriterio en la evaluación de impactos ambientales. [Tesis doctoral, Universidad Politécnica de Cataluña]
- Guacaneme, F.A. (2015). *Ventajas y usos del concreto reciclado.* [Tesis de grado, Universidad Militar Nueva Granada]
- Hernández, R., Fernández, C., y Baptista, P. (2014). *Metodología de la investigación*. Mc Graw Hill México
- Instituto Nacional de Calidad. (2011). AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. Norma Técnica Peruana 400.017.
- Instituto Nacional de Calidad. (2014). AGREGADOS. Método de ensayo normalizado para determinar la resistencia a la degradación en agregados gruesos de tamaños menores por abrasión e impacto en la máquina de Los Ángeles. Norma Técnica Peruana 400.019.
- Instituto Nacional de Calidad. (2015). CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Norma Técnica Peruana 339.034.
- Instituto Nacional de Calidad. (2015). CONCRETO. Método de ensayo para la medición del asentamiento del concreto de Cemento Portland. Norma Técnica Peruana 339.035.
- Instituto Nacional de Calidad. (2016). CONCRETO. Práctica normalizada para la elaboración y curado de especímenes de concreto en campo. Norma Técnica Peruana 339.033.

- Instituto Nacional de Calidad. (2017). MANEJO DE RESIDUOS DE LA

 CONSTRUCCIÓN. Manejo de residuos de la actividad de la construcción
 y demolición. Generalidades. Norma Técnica Peruana 400.050.
- Instituto Nacional de Calidad. (2018). *AGREGADOS. Agregados para el concreto. Requisitos.* Norma Técnica Peruana 400.037.
- Instituto Nacional de Calidad. (2018). AGREGADOS. Análisis granulométrico del agregado fino, grueso y global. Norma Técnica Peruana 400.012.
- Instituto Nacional de Calidad. (2018). AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Norma Técnica Peruana 339.185.
- Instituto Nacional de Calidad. (2018). AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino. Norma Técnica Peruana 400.022.
- Instituto Nacional de Calidad. (2018). AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado grueso. Norma Técnica Peruana 400.021.
- Instituto Nacional de Calidad. (2018). AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 µm (N° 200) por lavado en agregados. Norma Técnica Peruana 400.018.
- Instituto Nacional de Vías. (2013). Especificaciones generales de construcción de carreteras. Artículo 630 Concreto estructural.
- Jaramillo, S. (2019). Propuesta de alternativas para el aprovechamiento del ladrillo como RCD en Colombia estudio de caso de Bogotá. Universidad de La Salle.
- Jordan, J. C., & Viera, N. (2014). Estudio de la resistencia del concreto, utilizando como agregado el concreto reciclado en obra [Tesis de

- Pregrado, Universidad Nacional de Santa]. http://repositorio.uns.edu.pe/handle/UNS/2084
- Luna B., L., Frank E., C., Bruce B. H., & James R. B. (1971). *A Procedure for Evaluating Environmental Impact*. Washington D.C.: GEOLOGICAL SURVEY CIRCULAR 645.
- Mejía, E., Giraldo, J., y Martínez, L. (2013). Residuos de construcción y demolición Revisión sobre su composición, impactos y gestión. Revista Cintex, 18(1), 105-130.
- Montoya, E. (2014). *Practicas sostenibles en la construcción de edificaciones*[Tesis de Pregrado, Pontificia Universidad Católica del Perú].

 http://hdl.handle.net/20.500.12404/5976
- Olaya, J.E., y Rojas, D.C. (2020). Influencia de los residuos de construcción y demolición (RCD) provenientes de concreto en el comportamiento mecánico y al ataque de cloruros en morteros de cemento hidráulico.

 [Tesis de grado, Universidad Católica de Colombia].
- Organismo de Evaluación y Fiscalización Ambiental. (2019). *La fiscalización ambiental en residuos sólidos*. https://www.oefa.gob.pe/?wpfb_dl=6471
- Pacheco, L.M. (2017). Propiedades del concreto en estado fresco y endurecido.

 [Tesis de grado, Universidad José Carlos Mariátegui]
- Pacheco, C.A., Fuentes, L.G., Sánchez, E.H., y Rondón, H.A. (2017). Residuos de construcción y demolición (RCD), una perspectiva de aprovechamiento para la ciudad de barranquilla desde su modelo de gestión. *Ingeniería y desarrollo*, 35(2), 533-555.
- Reglamento Nacional de Edificaciones. (2009). *Concreto Armado.* Norma Técnica de Edificaciones E.060.
- Reglamento Nacional de Edificaciones. (2010). *Pavimentos Urbanos*. Norma Técnica CE.010.

- Sánchez, D. (2001). *Tecnología del concreto y del mortero, 5ª ed.* Pontificia Universidad Javeriana. ISBN 958-9247-04-0.
- Saravia, F. (2019). Los agregados reciclados de concreto como una alternativa de reciclaje para los residuos de construcción y demolición. [Tesis de grado, Universidad Científica del Sur de Lima].
- Silva-Urrego, Y. y Delvasto-Arjona, S. (2020). Uso de residuos de construcción y demolición como material cementicio suplementario y agregado grueso reciclado en concretos autocompactantes. *Informe técnico*, 85(1), 44-57. https://doi.org/10.23850/22565035.2502
- Sumari, J. C. (2016). Estudio del concreto de mediana a alta resistencia elaborado con residuos de concreto y cemento portland tipo I [Tesis de Pregrado, Universidad Nacional de Ingeniería].

 http://cybertesis.uni.edu.pe/handle/uni/5379
- Tafur, Y. (2015). Estudio del comportamiento físico-mecánico del concreto diseñado y elaborado con agregado grueso reciclado en la ciudad de Cajamarca [Tesis de grado, Universidad Nacional de Cajamarca]. http://repositorio.unc.edu.pe/handle/UNC/638
- Ticlla, J. (2018). Tecnología del concreto, Diseño de mezclas de concreto I

 Parte. https://afly.co/5q74

CAPÍTULO VII.

ANEXOS

Anexo N° 1. Matriz de consistencia

Formulación del	Objetivos	Hipótesis	Técnicas e
problema			instrumentos
	Objetivo general:		Técnicas
	Evaluar el concreto elaborado con residuos de construcción y demolición de la		Observación
. Cuálco con los	ciudad de chota, a fin de cumplir con las normas técnicas.	El concreto	Experimentación
¿Cuáles son los		elaborado con	Comparación
resultados de la	Objetivos específicos:	residuos de	Instrumentos:
evaluación del	Analizar las propiedades físico – mecánicas de los agregados producto de la	construcción y	Fotografías
concreto elaborado	demolición de concreto reciclado, para diseño de mezclas de este concreto.	demolición, cumple	Formatos de
con residuos de		con los estándares	ensayos de
construcción y	Elaborar diseño de mezcla con el método del Comité ACI 211.	de calidad	laboratorio
demolición de la		requeridos en las	Hojas de
ciudad de chota?	Comparar técnica, económica y ambientalmente el concreto elaborado con	Normas Técnicas.	comparación
	Residuos de Construcción y Demolición con un concreto convencional con		técnica, económica
	agregados de la cantera de Conchan para una resistencia f´c = 210 kg/cm2		y ambiental.

Anexo N° 2. Panel fotográfico

Agregado grueso de la cantera "Idrogo"

Foto N° 01: Adquisición de piedra chancada de la cantera "IDROGO" ubicada en el C.P. "San Juan del Suro", provincia de Chota.

Fecha: 25/07/2019

Foto N° 02: Proceso de selección de la muestra representativa mediante el cuarteo para los ensayos de laboratorio.

Fecha: 19/08/2019

Foto N° 03: Pesado de agregado grueso de cantera para realizar el análisis granulométrico.

Fecha: 19/08/2019

Foto N° 04: Proceso de Tamizado durante 5 minutos en el agitador mecánico.

Fecha: 19/08/2019

Foto N° 05: Pesado de muestra para rensayo de peso específico y absorción.

Fecha: 20/08/2019

Foto N° 06: Secado superficial de la muestra para obtener la muestra saturada con superficie seca.

Fecha: 21/08/2019

Foto N° 07: Llenado de olla con AG para ensayo de peso unitario suelto.

Fecha: 08/09/2019

Foto N° 08: Pesado de olla más muestra de AG para ensayo de peso unitario suelto.

Fecha: 08/09/2019

Foto N° 09: Llenado de olla con AG para ensayo de peso unitario variado.

Fecha: 09/09/2019

Foto N° 10: Pesado de olla más muestra de AG para ensayo de peso unitario variado.

Fecha: 09/09/2019

Foto N° 11: Lavado de agregado grueso para verificar el porcentaje de finos que pasan el tamiz # 200.

Fecha: 22/09/2019

Foto N° 12: Retirado de muestra después de las 500 revoluciones para ensayo de abrasión en la máquina de los Ángeles.

Fecha: 24/09/2019

Foto N° 13: Pesado de muestra final después de secado en estufa para ensayo de abrasión.

Fecha: 25/09/2019

Agregado fino de la cantera "Conchán"

Foto N° 14: Visita para la adquisición de agregado fino de la cantera de Conchan.

Fecha: 27/07/2019

Foto N° 15: Cuarteo para inicio de análisis granulométrico de arena.

Fecha: 20/08/2019

Foto N° 16: Pesado de 1 kg de agregado fino para tamizar en el agitador mecánico.

Fecha: 20/08/2019

Foto N° 17: Realizando el ensayo superficial de humedad que es parte del procedimiento para encontrar el peso específico.

Fecha: 04/09/2019

Foto N° 18: Muestra en envase graduado para ensayo de peso específico y absorción.

Fecha: 04/09/2019

Foto N° 19: Llenado de olla para realizar ensayo de peso unitario suelto del AF.

Fecha: 09/09/2019

Foto N° 20: Pesado de muestra más olla para ensayo de peso unitario suelto.

Fecha: 09/09/2019

Foto N° 21: Llenado de olla para realizar ensayo de peso unitario variado del AF.

Fecha: 10/09/2019

Foto N° 22: Pesado de muestra AF más olla para ensayo de peso unitario variado.

Fecha: 10/09/2019

Foto N° 23: Lavado de AF en ensayo de porcentaje que pasa tamiz # 200.

Fecha: 22/09/2019

Agregado grueso reciclado

Foto N° 24: Concreto reciclado almacenado en la chancadora de piedra.

Fecha: 28/06/2019

Foto N° 25: Rompiendo el concreto reciclado para que se pueda procesar en la trituradora.

Fecha: 29/06/2019

Foto N° 26: Concreto reciclado listo para su procesado.

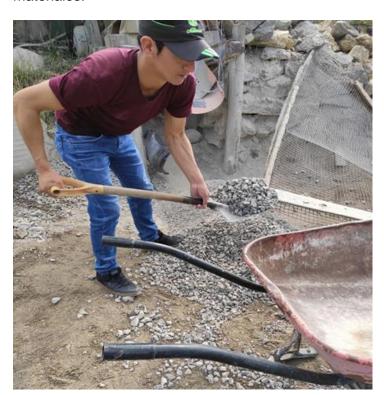

Fecha: 29/06/2019

Foto N° 27: Obtención de agregado grueso reciclado.

Fecha: 04/07/2019

Foto N° 28: Tamizado y traslado de material reciclado al laboratorio de materiales.

Fecha: 04/07/2019

Foto N° 29: Gradación del agregado grueso reciclado

Fecha: 17/07/2019

Foto N° 30: Pesos retenidos en tamices – análisis granulométrico.

Fecha: 17/07/2019

Foto N° 31: Peso sumergido de muestra más canastilla – Peso específico y absorción del AG reciclado.

Fecha: 24/07/2019

Foto N° 32: Muestra en la máquina de los ángeles para ensayo de abrasión del AG reciclado.

Fecha: 20/08/2019

Foto N° 33: Muestra seca al horno después de pasar por la máquina de los ángeles - ensayo de abrasión.

Fecha: 21/08/2019

Foto N° 34: Ensayo de peso unitario suelto del AG reciclado.

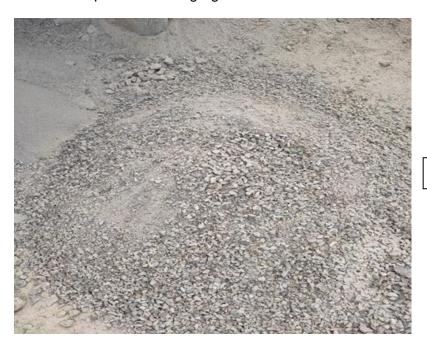
Fecha: 22/08/2019

Foto N° 35: Peso de muestra en olla - Ensayo de peso unitario suelto.

Fecha: 22/08/2019

Foto N° 36: Peso unitario variado del AG reciclado.

Fecha: 23/08/2019


Foto N° 37: Cantidad de finos que pasan el tamiz # 200.

Fecha: 22/09/2019

Agregado fino reciclado

Foto N° 38: Material sobrante del tamizado de agregado grueso reciclado y que se tamizara para obtener agregado fino reciclado.

Fecha: 05/07/2019

Foto N° 39: Agregado fino reciclado después de pasar por el tamiz de 3/8".

Fecha: 23/07/2019

Foto N° 40: Pesos retenidos de agregado fino reciclado – Análisis granulométrico.

Fecha: 17/07/2019

Foto N° 41: Peso de muestra más peso de la fiola del AF reciclado para ensayo de peso específico y absorción.

Fecha: 24/07/2019

Foto N° 42: Peso final de muestra después de pasar por la estufa durante 24 horas.

Fecha: 25/07/2019

Foto N° 43: Ensayo de peso unitario suelto de agregado fino reciclado.

Fecha: 22/08/2019

Foto N° 44: Ensayo de peso unitario variado del AF reciclado.

Fecha: 23/08/2019

Foto N° 45: Porcentaje de material fino que pasa el tamiz # 200.

Fecha: 22/09/2019

Concreto fresco y endurecido

Foto N° 46: Pesado de materiales para la mezcla de concreto.

Foto N° 47: Mezclado de concreto.

Foto N° 48: Medición de temperatura al concreto fresco.

Foto N° 49: Ensayo de slump con el cono de Abrams.

Foto N° 50: Ensayo de contenido de aire por el método de presión.

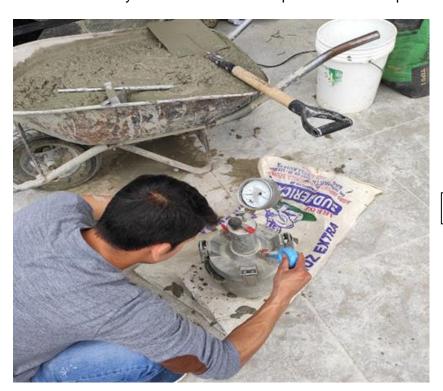


Foto N° 51: Ensayo de peso específico de concreto fresco.

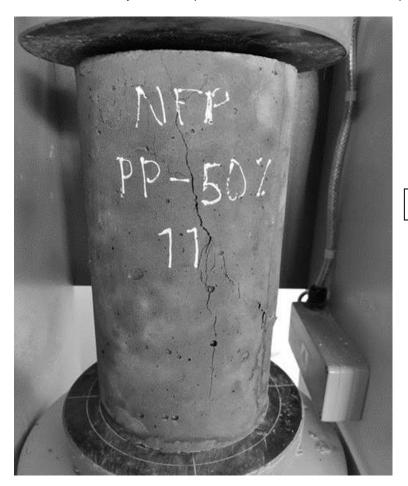
Foto N° 52: Varillado en el llenado de probetas.

Foto N° 53: Acabado superior de probetas

Foto N° 54: Desmolde y codificación de probetas.

Fecha: 11/10/2019

Foto N° 55: Curado de probetas hasta su ruptura.



Fecha: 15/10/2019

Foto N° 56: Colocación de probeta en máquina de compresión.

Foto N° 57: Ensayo de compresión axial con una falla del tipo 2.

Fecha: 07/11/2019

Anexo N° 3. Ficha técnica de cemento tipo I

CEMENTOS PACASMAYO S.A.A.

Celle La Colonia Nrc. 150 Urb. El Vivaro de Monterrico Santiago de Surco - Lima Carretera Panamericana Nicria Kim. 669 Pacasmayo - La Libertad Teléfono 317 - 8000

G-CC-F-04 Versión 03

Cemento Portland Tipo I

Conforme a la NTP 334.009 / ASTM C150 Pacasmayo, 23 de Febrero del 2018

COMPOSICIÓN QUÍMICA		CPSAA	Requisito NTP 334.009 / ASTM C150
M ₀ O SO3	%	2.1	Méximo 6.0
SO3	%	2.7	Máximo 3.0
Pérdida por Ignición	%	3.1	Máximo 3.5
Residuo Insoluble	%	0.60	Máximo 1.5

PROPIEDADES FISICAS		CPSAA	Requisito NTP 334,009 / ASTM C150
Contenido de Aire	%	7	Máximo 12
Expansión en Autoclave	%	0.09	Máximo 0.80
Superficie Específica	cm2/g	3740	Mínimo 2800
Densidad	g/mL	3.08	NO ESPECIFICA
Resistencia Compresión :			
Resistencia Compresión a 3días	MPa (Kg/cm2)	30.1 (307)	Minimo 12.0 (Minimo 122)
Resistencia Compresión a 7días	MPa (Kg/cm2)	36.9 (376)	Mínimo 19.0 (Mínimo 194)
Resistencia Compresión a 28días (*)	MPa (Kg/cm2)	43.2 (441)	Mínimo 28.0 (Mínimo 286)
Tiempo de Fraguado Vicat :			
Fraguado Inicial	min	158	Mínimo 45
Fraguado Final	min	272	Máximo 375

Los resultados arriba mostrados, corresponden al promedio del cemento despachado durente el periodo del 01-01-2018 al 31-01-2018. La resistencia a la compresión a 28 días corresponde al mes de Diciembre 2017. (*) Regulsito opcional.

Ing. Dennis R. Rodas Lavado

Superintendente de Control de Calidad

Solicitado por :

Distribuidora Norte Pacasmayo S.R.L.

Está totalmente prohibida la reproducción total o parcial de este documento sin la autorización de Cernencos Pacasmayo S.A.A.

CORPORACIÓN JCB CONSTRUCTORES E.I.R.L

Dirección: Av. Agricultura 171-175 - Chota.

Área de asistencia y ventas : CEL: 954570169 - RPC #954570169. FIJ: 076351959

Señor: FERNÁNDEZ PÉREZ, Neyser

Gerente general.: COLUNCHE BUSTAMANTE, Jorge Luis

RUC: 20602214711

De nuestra consideración le presentamos nuestra cotización de flete terrestre en camión volquete de 10 m3.

De la ciudad de Chota a la Chancadora de piedra San Juan en el río Chotano, y de la chancadora hacia la ciudad de Chota

Equipos	Costo unitario (S/.)	
Cargador frontal (hm)	180.00	
Transporte de material volquete 10 m3 (hm)	70.00	

El presupuesto a todo costo tiene un monto de 250 soles por viaje en el punto señalado.

- La Cotización tiene una validez de 30 días.
- La Cotización incluye IGV (18%).

Chota, 10 de noviembre del 2020

Anexo N° 5. Diseños de mezcla

Diseño de mezclas para concreto patrón (Método ACI-211)

1. CÁLCULO DE F'cr (Resistencia Promedio Requerida)

$$F'c = 210 \text{ kg/cm}2$$

a). Cuando Tenemos la Desviación Estándar

$$F'cr = F'c + 1.34 * S - \longrightarrow (i)$$

$$F'cr = F'c + 2.33 * S - 35 \rightarrow (ii)$$

$$S = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$

 $x_i = V$ alores de resistencia obtenidos en probetas estándar.

 $\bar{x} = Promedio de valores de resistencia obtenidos en probetas estándar.$

b). Cuando no Tenemos Registro de Resistencia, Correspondientes a Obras Anteriores

F′c	F´cr
Menos de 210	F'c + 70
210 - 350	F'c + 84
> 350	1.1*F'c + 50

c). Teniendo en Cuenta el Control de Calidad en la Obra

Regular o Malo	1.3*F′c a 1.5*F′c
Bueno	1.2*F′c
Excelente	1.1*F′c

$$F'cr = 294 \text{ kg/cm}2$$

2. Contenido de Aire

Tamaño Máximo Nominal	3/4"
Contenido de Aire	2.00%

3. Contenido de Agua

Slump	3"-4"
Contenido de Agua	205.00 lts/m3

4. Relación Agua/Cemento (Por Resistencia F'cr)

250.00	 0.62			
294.00	 X	6.00		50.00
300.00	 0.55	0.38 - X	=	-0.07

5. Contenido de Cemento

Factor C =

$$\frac{205.00 \text{ lts}}{\text{C}}$$
 = 0.558

8.64 bls

6. Peso del Agregado Grueso

Peso A. G. =
$$\frac{b}{b_0}$$
 * Peso U. S. C.

Peso A.G.	1016.07 kg
-----------	------------

7. Volumen Absoluto

Cemento	0.119 m3
Agua	0.20525 m3
Aire	0.020 m3
A.G.	0.392 m3
Total	0.736 m3
A.F.	0.264 m3

8. Peso del Agregado Fino

	0	- 6
Peso A.F.		684.32 kg

9. Presentación del Diseño en Estado Seco

Cemento	367.12 kg
A.F.	684.32 kg
A.G.	1016.07 kg

Agua 205.00 kg

10. Corrección por Humedad de los Agregados

a). Agregado Fino

A.F. Final 694.13 kg

b). Agregado Grueso

A.G. Final 1018.11 kg

11. Aporte de Agua a la Mezcla

a). Agregado Fino

A.F. Final 2.94 lts

b). Agregado Grueso

A.G. Final	-4.91 lts
Total	-1.97 lts

12. Agua Efectiva

Agua = 206.97 lts

13. Proporcionamiento del Diseño

-	RESUMEN			
	Cemento	A.Grueso	A.Fino	Agua
Dosificación en Peso	367.12 kg	1018.11 kg	694.13 kg	206.97 lts
Proporciones del Diseño	1.00	2.77	1.89	23.96 lts

Diseño de mezclas para concreto reciclado (Método ACI-211)

1. CÁLCULO DE F'cr (Resistencia Promedio Requerida)

$$F'c = 210 \text{ kg/cm}2$$

a). Cuando Tenemos la Desviación Estándar

$$F'cr = F'c + 1.34 * S - \longrightarrow (i)$$

$$F'cr = F'c + 2.33 * S - 35 \rightarrow (ii)$$

$$S = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$

 $x_i = Valores$ de resistencia obtenidos en probetas estándar.

 $\bar{x} = Promedio de valores de resistencia obtenidos en probetas estándar.$

b). Cuando no Tenemos Registro de Resistencia, Correspondientes a Obras Anteriores

F´c	F′cr
Menos de 210	F'c + 70
210 - 350	F'c + 84
> 350	1.1*F′c + 50

c). Teniendo en Cuenta el Control de Calidad en la Obra

Regular o Malo	1.3*F′c a 1.5*F′c
Bueno	1.2*F′c
Excelente	1.1*F′c

$$F'cr = 294 \text{ kg/cm}2$$

2. Contenido de Aire

Tamaño Máximo Nominal	1"
Contenido de Aire	1.50%

3. Contenido de Agua

Slump	3"-4"
Contenido de Agua	193.00 lts/m3

4. Relación Agua/Cemento (Por Resistencia F'cr)

250.00	 0.62			
294.00	 X	6.00	_	50.00
300.00	 0.55	0.38 - X	_	-0.07

X = 0.558 A/C

5. Contenido de Cemento

6. Peso del Agregado Grueso

$$Peso\ A.\ G. = \frac{b}{b_0} * Peso\ U.\ S.\ C.$$

Peso A.G.	765.17 kg
-----------	-----------

7. Volumen Absoluto

Cemento	0.112 m3
Agua	0.19324 m3
Aire	0.015 m3
A.G.	0.344 m3
Total	0.664 m3
A.F.	0.336 m3

8. Peso del Agregado Fino Peso A.F. 686.15 kg 686.15 kg

9. Presentación del Diseño en Estado Seco

Cemento	345.63 kg
A.F.	686.15 kg
A.G.	765.17 kg
Agua	193.00 kg

10. Corrección por Humedad de los Agregados

a). Agregado Fino

A.F. Final 707.44 kg

b). Agregado Grueso

A.G. Final 803.88 kg

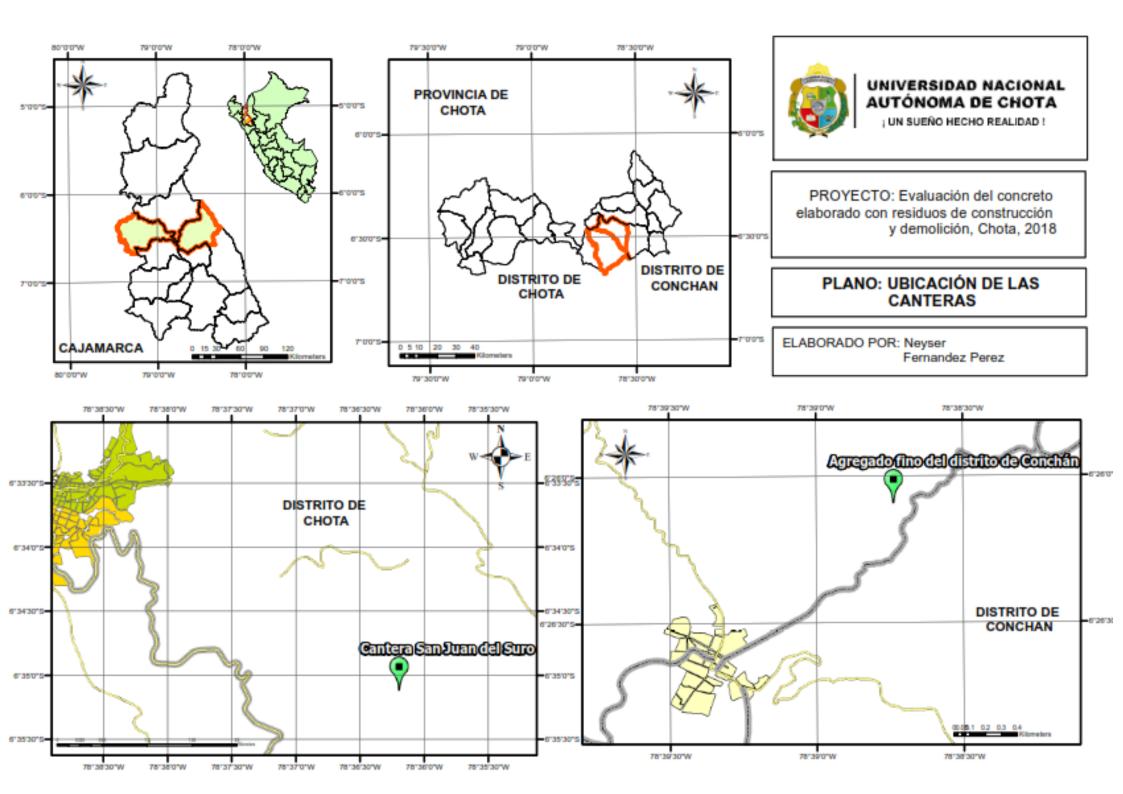
11. Aporte de Agua a la Mezcla

a). Agregado Fino

A.F. Final -52.31 lts

b). Agregado Grueso

A.G. Final	7.70 lts		
Total	-44.61 lts		


12. Agua Efectiva

Agua = 237.61 lts

13. Proporcionamiento del Diseño

	RESUMEN			
	Cemento	A.G.	A.F.	Agua
Dosificación en Peso	345.63 kg	803.88 kg	707.44 kg	237.61 lts
Proporciones del Diseño	1.00	2.33	2.05	29.22 lts

Anexo N° 6. Plano de ubicación y localización

Anexo Nº 7. Análisis estadístico ANOVA

Modelo lineal general: Kg/cm^2 vs. DISEÑO; EDAD

Método

Codificación de factores (-1; 0; +1)

Información del factor

Factor	Tipo	Niveles	s Valores
DISEÑO	Fijo	6	0.00%; 10.00%; 25.00%; 50.00%; 75.00%;
			100.00%
EDAD	Fijo	3	14 días; 28 días; 7 días

Análisis de Varianza

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
DISEÑO	5	40288	8057.5	95.25	0.000
EDAD	2	51295	25647.4	303.18	0.000
Error	70	5922	84.6		
Falta de ajuste	10	1277	127.7	1.65	0.114
Error puro	60	4645	77.4		
Total	77	96649			

Resumen del modelo

		R-cuad.	R-cuad.
S	R-cuad.	(ajustado)	(pred)
9.19754	93.87%	93.26%	92.42%

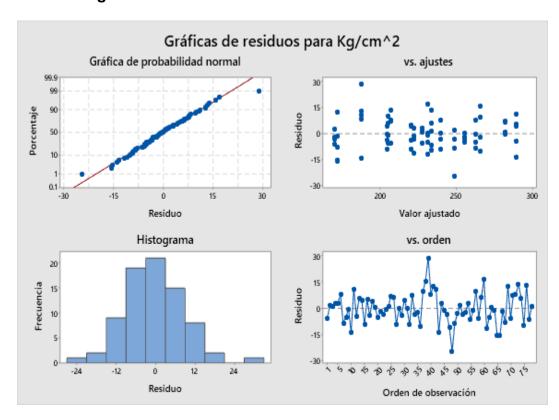
Coeficientes

		EE del			
Término	Coef	coef.	Valor T	Valor p	FIV
Constante	229.26	1.04	219.40	0.000	
DISEÑO					
0.00%	30.80	2.26	13.61	0.000	1.69
10.00%	23.62	2.41	9.82	0.000	1.78
25.00%	7.54	2.41	3.13	0.003	1.78
50.00%	-9.69	2.33	-4.16	0.000	1.73
75.00%	-27.22	2.33	-11.67	0.000	1.73
EDAD					
14 días	2.89	1.51	1.92	0.059	1.36
28 días	29.33	1.46	20.06	0.000	1.36

Ecuación de regresión

Kg/cm^2 = 229.26 + 30.80 DISEÑO_0.00% + 23.62 DISEÑO_10.00% + 7.54 DISEÑO_25.00%

- 9.69 DISEÑO_50.00% - 27.22 DISEÑO_75.00%


- 25.06 DISEÑO_100.00% + 2.89 EDAD_14

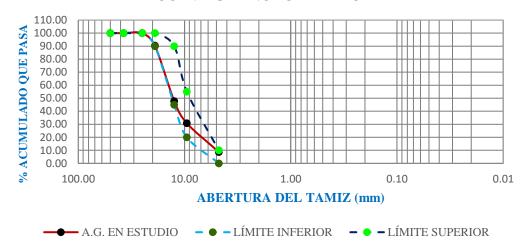
días + 29.33 EDAD_28 días - 32.21 EDAD_7 días

Ajustes y diagnósticos para observaciones poco comunes

				Resid
Obs	Kg/cm^2	Ajuste	Resid	est.
39	216.40	187.36	29.04	3.33 R
48	224.20	248.90	-24.70	-2.84 R

Residuo grande R

Anexo N° 8. Formatos de ensayos de laboratorio



Análisis Granulométrico del Agregado Grueso - Cantera

ORIGE	N Material de	Material de la cantera "Idrogo" – Comunidad de San Juan del Suro -				
:		Chota				
PESO D	PESO DE LA MUESTRA: 5000 gr					
ENSAY	ADO POR:	Neyser Fernández Pérez				
NORMA	A TÉCNICA:		NTP 40	0.012: 2018		
PÉRDII	PÉRDIDA DE LA MUESTRA EN PORCENTAJE (%): 0.00					
FECHA	:		19 y 20 de a	agosto del 2019		
N°	Abertura del	Masa	% Retenido	% Retenido	% Que Pasa	
Tamiz	Tamiz (mm)	Retenida		Acumulado	Acumulado	
1"	25.00 mm	0.00 gr	0.00%	0.00%	100.00%	
3/4"	19.00 mm	480.20 gr	9.60%	9.60%	90.40%	
1/2"	12.50 mm	2127.40 gr	42.55%	52.15%	47.85%	
3/8"	9.50 mm	852.70 gr	17.05%	69.21%	30.79%	
# 4	4.75 mm	1105.90 gr	22.12%	91.33%	8.67%	
Fondo		433.70 gr	8.67%	100.00%	0.00%	
Total Fi	Total Final (Peso después		100.00%			
de	del tamizado)					
Tam	naño Máximo	3/4"				
Nor	ninal (TMN)					

CURVA GRANULOMÉTRICA

OBSERVACIONES: Este ensayo fue realizado al agregado grueso tal y como se extrajo de la cantera.

Resp. Laboratorio

CCAUDA E BENAVDEZ NUNEZ INGENIERA CIVIL Reg. CIP. N° 176824

Análisis Granulométrico del Agregado Fino - Cantera

ORIGE	N Material d	Material de la cantera de Conchán, ubicada en la carretera Chota –				
:			Tacabamba			
PESO D	E LA MUESTRA		10	000 gr		
ENSAY	ADO POR:			rnández Pérez		
NORMA	A TÉCNICA:		NTP 400	0.012: 2018		
PÉRDIDA DE LA MUESTRA EN PORCENTAJE (%): 0.01				0.01		
FECHA	:		20 y 21 de a	agosto del 2019		
N°	Abertura del	Masa	% Retenido	% Retenido	%Que Pasa	
Tamiz	Tamiz (mm)	Retenida		Acumulado	Acumulado	
3/8"	9.50 mm	0.00 gr	0.00%	0.00%	100.00%	
# 4	4.75 mm	12.50 gr	1.25%	1.25%	98.75%	
# 8	2.36 mm	27.60 gr	2.76%	4.01%	95.99%	
# 16	1.18 mm	153.50 gr	15.35%	19.36%	80.64%	
# 30	600.00 mm	226.50 gr	22.65%	42.01%	57.99%	
# 50	300.00 mm	330.20 gr	33.02%	75.04%	24.96%	
# 100	150.00 mm	191.50 gr	19.15%	94.19%	5.81%	
Fondo		58.10 gr	5.81%	100.00%	0.00%	
Total Fin	nal (Peso después	999.90 gr	100.00%			
de	l tamizado)					
Módulo	de Fineza (MF)	2.36				

CURVA GRANULOMÉTRICA 110.00 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 100.00000 10.00000 1.00000 0.10000 0.01000 0.00100 0.00010 0.00001 ABERTURA DEL TAMIZ (mm) - A.F. EN ESTUDIO - ● - LÍMITE INFERIOR **- ● -** LÍMITE SUPERIOR

OBSERVACIONES: Este ensayo fue realizado al agregado fino tal y como se extrajo de la cantera.

Resp. Laboratorio

Alex Ricardo Cieza Silva ENCARGADO DE LABORATORIO DE ENSAYO DE MATERIALES

Asesor

INGENIERA CIVIL Reg. CIP. Nº 176824

Método de Ensayo Normalizado para el Contenido de Humedad Total Evaporable del Agregado Grueso - Cantera por secado

ORIGEN:	Material de la cantera "Idrogo" – Comunidad de San Juan del Suro - Chota					
PESO DE LA M	UESTRA:		Para cada E	Ensayo 1000 gr		
ENSAYADO PO	R:		Neyser Fei	rnández Pérez		
NORMA TÉCNI	CA:		NTP 339	9.185: 2018		
FECHA:		30 d	e setiembre y (1 de octubre d	lel 2019	
De	scripción		D	Datos y Resultados		
Muestra			01	02	03	
Peso del recipient	e		883.90 gr	498.80 gr	883.90 gr	
Peso del recipient	e + muestra l	númeda	4383.90 gr	3998.80 gr	4383.90 gr	
Peso del recipient	e + muestra s	seca	4377.30 gr	3991.50 gr	4376.80 gr	
Peso de la muestra	a húmeda ori	ginal	3500.00 gr	3500.00 gr	3500.00 gr	
Peso de la muestra seca		3493.40 gr	3492.70 gr	3492.90 gr		
Peso del agua		6.60 gr	7.30 gr	7.10 gr		
Porcentaje de humedad		0.19%	0.21%	0.20%		
Porcentaje de hun	nedad (Prome	edio)		0.20%		

OBSERVACIONES: Este ensayo fue realizado al agregado grueso tal y como se extrajo de la cantera.

Alex Ricardo Cleza Silva Encargado de Laboratorio DE ENSAYO DE MATERIALES

Resp. Laboratorio

COUDA E SENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

Método de Ensayo Normalizado para el Contenido de Humedad Total Evaporable del Agregado Fino- Cantera por secado

ORIGEN:	Material de	Material de la cantera de Conchán, ubicada en la carretera Chota – Tacabamba				
PESO DE LA M	UESTRA:		Para cada E	nsayo 1000 gr		
ENSAYADO PO	R:		Neyser Fe	nández Pérez		
NORMA TÉCNI	CA:		NTP 339	9.185: 2018		
FECHA:		30 de setiembre y 01 de octubre del 2019			el 2019	
De	scripción		D	atos y Resultad	dos	
Muestra			01	02	03	
Peso del recipiento	e		159.70 gr	93.80 gr	93.20 gr	
Peso del recipiento	e + muestra l	númeda	1159.70 gr	1093.80 gr	1093.20 gr	
Peso del recipiento	e + muestra s	eca	1145.50 gr	1079.70 gr	1079.10 gr	
Peso de la muestra	a húmeda ori	ginal	1000.00 gr	1000.00 gr	1000.00 gr	
Peso de la muestra seca		985.80 gr	985.90 gr	985.90 gr		
Peso del agua		14.20 gr	14.10 gr	14.10 gr		
Porcentaje de humedad		1.44%	1.43%	1.43%		
Porcentaje de hum	nedad (Prome	edio)		1.43%		

OBSERVACIONES: Este ensayo fue realizado al agregado fino tal y como se extrajo de la cantera.

Alex Ricardo Cieza Silva
encargado de Laboratorio
de ensayo de Materiales

Resp. Laboratorio

CAUDA E SENAVIDEZ NUNEZ INGENIERA CIVIL Rog. CIP. Nº 176824

LABORATORIO DE MATERIALES

Método de Ensayo Normalizado para Determinar Materiales más Finos que Pasan por el Tamiz Normalizado 75 μm (N.º 200) por Lavado en el Agregado Grueso- Cantera

ORIGEN:	Material de la cantera "Idrogo" – Comunidad de San Juan del Suro - Chota				
PESO DE LA M	UESTRA:		Para cada E	Ensayo 3000 gr	,
ENSAYADO PO	R:		Neyser Fe	rnández Pérez	
NORMA TÉCNI	CA:		NTP 400	0.018: 2018	
FECHA:			22 y 23 de set	tiembre del 20	19
De	scripción		A	Agregado Grue	so
Muestra			01	02	03
Peso del recipient	e		281.50 gr	295.80 gr	281.50 gr
Peso del recipient	e + muestra		3281.50 gr	3295.80 gr	3281.50 gr
Peso seco de la m	uestra origina	al	3000.00 gr	3000.00 gr	3000.00 gr
Peso del recipient	e + muestra l	avada seca	3256.20 gr	3268.00 gr	3255.10 gr
Peso seco de la muestra ensayada		2974.70 gr	2972.20 gr	2973.60 gr	
Material que pasa la malla # 200		25.30 gr	27.80 gr	26.40 gr	
Porcentaje que pasa la malla # 200			0.84%	0.93%	0.88%
Porcentaje promedio que pasa la malla # 200				0.88%	

OBSERVACIONES: Este ensayo fue realizado al agregado grueso tal y como se extrajo de la cantera.

Alex Ricardo Cieza Silva ENCARGADO DE LABORATORIO DE ENSAYO DE MATERIALES

Resp. Laboratorio

COUDA E SENAVIDEZ NUNEZ
INGENIERA CIVIL
Reg. CIP. N° 176824

Método de Ensayo Normalizado para Determinar Materiales más Finos que Pasan por el Tamiz Normalizado 75 μm (N.º 200) por Lavado en el Agregado Fino- Cantera.

ORIGEN:	Material de la cantera de Conchán, ubicada en la carretera Chota - Tacabamba				retera Chota –		
PESO DE LA M	UESTRA:		Para cada Ensayo 1000 gr				
ENSAYADO PO	R:		Neyser Fernández Pérez				
NORMA TÉCNI	CA:		NTP 400	0.018: 2018			
FECHA:			22 y 23 de setiembre del 2019				
Descripción		Agregado Fino					
Muestra			01	02	03		
Peso del recipiente			159.70 gr	150.90 gr	159.70 gr		
Peso del recipiente + muestra		1259.70 gr	1250.90 gr	1259.70 gr			
Peso seco de la muestra original		al	1100.00 gr	1100.00 gr	1100.00 gr		
Peso del recipiente + muestra lavada seca		1222.00 gr	1219.10 gr	1224.10 gr			
Peso seco de la muestra ensayada			1062.30 gr	1068.20 gr	1064.40 gr		
Material que pasa la malla # 200			37.70 gr	31.80 gr	35.60 gr		
Porcentaje que pasa la malla # 200		3.43%	2.89%	3.24%			
Porcentaje promedio que pasa la malla # 200			3.18%				

OBSERVACIONES: Este ensayo fue realizado al agregado fino tal y como se extrajo de la cantera.

Alex Ricardo Cleza Silva Encargado De Laboratorio OE ENSAVO DE MATERIALES

Resp. Laboratorio

CAUDA E SENAVDEZ NUNEZ
INGENIERA CIVIL
Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar la Densidad, la Densidad Relativa (Peso Específico) del Agregado Grueso.

ORIGEN:	Material de la cantera "Idrogo" – Comunidad de San Juan del Suro - Chota				
PESO DE LA MUESTRA:		Para cada Ensayo 4000 gr			
ENSAYADO PO		Neyser Fernández Pérez			
NORMA TÉCNI			NTP 400.021: 20		
FECHA:		20, 21 y 22 de agosto del 2019			
	ripción	Datos y Resultados			
	estra	01			
Peso del recipiente	cstra	1017.50 gr	1017.50 gr	1017.50 gr	
Peso de la muestra i	nicial + recipiente	5017.50 gr	5017.50 gr	5017.50 gr	
Peso de la muestra s		4000.00 gr	4000.00 gr	4000.00 gr	
	con superficie seca +	5042.30 gr	5042.30 gr	5044.80 gr	
recipiente	con superficie seca +	3042.30 gi	3042.30 gi	3044.80 gi	
Peso de la muestra saturada superficialmente seca en el aire		4024.80 gr	4024.80 gr	4027.30 gr	
	Peso en el agua de la muestra saturada		2485.20 gr	2486.20 gr	
Peso final de la mue	estra + recipiente	4882.60 gr	4866.80 gr	4657.90 gr	
Peso final de la muestra después de la estufa		3982.50 gr	3982.80 gr	3982.70 gr	
Densidad del agua	Densidad del agua		998.766	998.766 gr/cm3	
	<u> </u>		gr/cm3		
Peso específico de r	Peso específico de masa (pem)		2594.87	2592.35 gr/cm3	
		gr/cm3	gr/cm3		
Peso específico de masa saturada con		2614.19	2610.96	2610.04 gr/cm3	
superficie seca (PeSSS)		gr/cm3	gr/cm3	2620.10 / 2	
Peso específico aparente (Pea)		2640.67 gr/cm3	2637.35 gr/cm3	2639.10 gr/cm3	
Peso específico de masa (pem) Promedio		2595.10 gr/cm3			
		2611.73 gr/cm3			
Peso específico de masa saturada con superficie seca (PeSSS) Promedio		J. Company of the com			
Peso específico aparente (Pea) Promedio		2639.04 gr/cm3			

OBSERVACIONES: Este ensayo fue realizado al agregado grueso tal y como se extrajo de la cantera.

Resp. Laboratorio

COMUNA E BENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar la Absorción del Agregado Grueso- Cantera

ORIGEN:	Material de la cantera "Idrogo" – Comunidad de San Juan del Suro - Chota						
PESO DE LA M	UESTRA:		Para cada E	nsayo 4000 gr			
ENSAYADO PO	R:		Neyser Fei	nández Pérez			
NORMA TÉCNI	CA:		NTP 400.021: 2018				
FECHA:			20, 21 y 22 de agosto del 2019				
De	scripción		Datos y Resultados				
Muestra			01	02	03		
Peso del recipiente			1017.50 gr	1017.50 gr	1017.50 gr		
Peso de la muestra	a inicial + rec	cipiente	5017.50 gr	5017.50 gr	5017.50 gr		
Peso de la muestra seca en el aire		ire	4000.00 gr	4000.00 gr	4000.00 gr		
Peso de la muestra con superficie seca + recipiente			5042.30 gr	5047.30 gr	5044.80 gr		
Peso de la muestra saturada superficialmente seca en el aire			4024.80 gr	4029.80 gr	4027.30 gr		
Peso final de la muestra + recipiente			4882.60 gr	4866.80 gr	4657.90 gr		
Peso final de la muestra después de la estufa		3982.50 gr	3982.80 gr	3982.70 gr			
Absorción (Ab)		0.62%	0.75%	0.68%			
Absorción (Ab) Promedio			0.68%				

OBSERVACIONES: Este ensayo fue realizado al agregado grueso tal y como se extrajo de la cantera.

Alex Ricardo Cleza Silva
Encargado De Laboratorio
OE ENSAYO DE MATERIALES

Resp. Laboratorio

COUDTA E SENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

<u>Método de Ensayo Normalizado para Determinar la Densidad, la Densidad Relativa (Peso Específico) del Agregado Fino</u>

ORIGEN:	Material de la cantera de Conchán, ubicada en la carretera Chota – Tacabamba				
PESO DE LA MUESTRA:		Ensayo 1000 gr y 2 ensayos de 500 gr			
ENSAYADO PO	R:	Neyser Fernández Pérez			
NORMA TÉCNI	CA:	N	NTP 400.022: 20	18	
FECHA:		03, 04 y 05 de setiembre del 2019			
Desc	ripción	Datos y Resultados			
Muestra		01	02	03	
Peso de la muestra superficialmente s		1000.00 gr	500.00 gr	500.00 gr	
Peso de la fiola (5	00 ml)	261.30 gr	183.10 gr	183.00 gr	
Peso de la fiola lle hasta la marca de	•	1256.50 gr	679.00 gr	679.00 gr	
Peso de la fiola lleno de la muestra y de agua hasta la marca de calibración (C)		1874.30 gr	988.50 gr	988.40 gr	
Peso de la tara		151.30 gr	159.60 gr	88.90 gr	
Peso final de la muestra + tara		1141.00 gr	654.70 gr	583.90 gr	
Peso de la muestra seca en el horno (A)		989.70 gr	495.10 gr	495.00 gr	
Densidad del agua	ı	0.999 gr/cm3	0.999 gr/cm3	0.999 gr/cm3	
Densidad (Seca en el horno)		2.59 gr/cm3	2.60 gr/cm3	2.59 gr/cm3	
Densidad (Saturada superficialmente seca)		2.61 gr/cm3	2.62 gr/cm3	2.62 gr/cm3	
Densidad aparente		2.66 gr/cm3	2.66 gr/cm3	2.66 gr/cm3	
Densidad (Seca en el horno) Promedio		2.59 gr/cm3			
Densidad (Saturada superficialmente seca) Promedio		2.62 gr/cm3			
Densidad aparente (Promedio)		2.66 gr/cm3			

OBSERVACIONES: Este ensayo fue realizado al agregado fino tal y como se extrajo de la cantera.

Resp. Laboratorio

CCAUDA E BENAVDEZ NUNEZ
INGENIERA CIVIL
Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar la Absorción del Agregado Fino- Cantera

ORIGEN:	Material de la cantera de Conchán, ubicada en la carretera Chota – Tacabamba				
PESO DE LA MUESTRA:		Ensayo de 1000 gr y 2 ensayos de 500 gr			
ENSAYADO PO	R:	Neyser Fernández Pérez			
NORMA TÉCNI	CA:	NTP 400.022: 2018			
FECHA:		03, 04 y 05 de setiembre del 2019			
Descripción		Datos y Resultados			
Muestra		01	02	03	
Peso de la muestra de saturado superficialmente seca (S)		1000.00 gr	500.00 gr	500.00 gr	
Peso de la tara		151.30 gr	159.60 gr	88.90 gr	
Peso final de la muestra + tara		1141.00 gr	654.70 gr	583.90 gr	
Peso de la muestra seca en el horno		989.70 gr	495.10 gr	495.00 gr	
(A)					
Absorción (Ab)		1.04%	0.99%	1.01%	
Absorción (Ab) Promedio		1.01%			

OBSERVACIONES: Este ensayo fue realizado al agregado fino tal y como se extrajo de la cantera.

Alex Ricardo Cleza Silva Encargado De Laboratorio De Ensayo de Materiales

Resp. Laboratorio

CAUDA E SENANDEZ NUNEZ INGENIERA CIVIL. Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar la Masa por Unidad de Volumen o Densidad ("Peso Unitario") del Agregado Grueso- Cantera

	1					
ORIGEN:	Material de la cantera "Idrogo" – Comunidad de San Juan d					
	- Chota					
ENSAYADO PO	R:	Neyser Fernández Pérez				
NORMA TÉCNI	ICA:]	NTP 400.017: 2011			
FECHA:		08 y 09 de setiembre del 2019				
		Peso Unitario Su	ielto			
Descripc	ión	Datos y Resultados				
Muestra		01	02	03		
Peso del molde		1.65 kg	1.65 kg	1.65 kg		
Peso del molde +	Peso del molde + material		5.48 kg	5.46 kg		
Volumen del mole	de	0.00278 m3	0.00278 m3	0.00278 m3		
Peso del material		3.84 kg	3.84 kg	3.82 kg		
Densidad de masa		1382.95 kg/m3	1381.07 kg/m3	1374.24 kg/m3		
Densidad de masa		1379.42 kg/m3				
(Promedio)						
	Peso Unitario Variado					
Descripción		Datos y Resultados				
Muestra		01	02	03		
Peso del molde		1.66 kg	1.66 kg	1.66 kg		
Peso del molde + material		5.92 kg	5.89 kg	5.91 kg		
Volumen del molde		0.00278 m3	0.00278 m3	0.00278 m3		
Peso del material		4.26 kg	4.24 kg	4.25 kg		
Densidad de masa		1534.16 kg/m3	1524.84 kg/m3	1530.38 kg/m3		
Densidad de masa		1529.80 kg/m3				
(Promedio)						

OBSERVACIONES: Este ensayo fue realizado al agregado grueso tal y como se extrajo de la cantera.

Alex Ricardo Cleza Silva
Encargado de Laboratorio
De Ensayo de Materiales

Resp. Laboratorio

CCAUDA E BENAVIDEZ NUNEZ
INGENIERA CIVIL
Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar la Masa por Unidad de Volumen o Densidad ("Peso Unitario") del Agregado Fino- Cantera

	Motorial d	a la contara da Conc	hán uhiaada an la	aarratara Chata				
ORIGEN:	Wiateriai u	Material de la cantera de Conchán, ubicada en la carretera Chota – Tacabamba						
ENSAYADO P	OR:	Ne	yser Fernández Pér	ez				
NORMA TÉCN	NICA:		NTP 400.017: 2011					
FECHA:		09 y 1	10 de setiembre del	2019				
		Peso Unitario Su	ielto					
Descrip	oción		Datos y Resultados					
Muestra		01	02	03				
Peso del molde		1.65 kg	1.65 kg	1.65 kg				
Peso del molde	+ material	5.89 kg	5.87 kg	5.89 kg				
Volumen del molde		0.00280 m3	0.00280 m3	0.00280 m3				
Peso del material		4.24 kg	4.23 kg	4.24 kg				
Densidad de ma	Densidad de masa		1512.60 kg/m3	1516.64 kg/m3				
Densidad de ma	sa		1515.28 kg/m3					
(Promedio)								
		Peso Unitario Va	riado					
Descrip	oción		Datos y Resultados					
Muestra		01	02	03				
Peso del molde		1.65 kg	1.65 kg	1.65 kg				
Peso del molde	+ material	6.10 kg	6.10 kg	6.08 kg				
Volumen del mo	olde	0.00280 m3	0.00280 m3	0.00280 m3				
Peso del materia	Peso del material		4.46 kg	4.43 kg				
Densidad de ma	sa	1593.76 kg/m3		1585.39 kg/m3				
Densidad de ma (Promedio)	sa	1591.25 kg/m3						

OBSERVACIONES: Este ensayo fue realizado al agregado fino tal y como se extrajo de la cantera.

Resp. Laboratorio

Método de Ensayo Normalizado para Determinar la Resistencia a la Degradación en el Agregado Grueso-Cantera por Abrasión e Impacto en la Máquina de Los Ángeles

ORIGEN:	Material de la cantera "Idrogo" – Comunidad de San Juan del Suro - Chota				
ENSAYADO PO	R:		Neyser Fe	nández Pérez	
NORMA TÉCNI	CA:		NTP 400	0.019: 2014	
FECHA:		2	23, 24 y 25 de s	setiembre del 2	019
De	scripción		D	atos y Resultad	dos
Muestra			01	02	03
Peso del recipient	e		923.60 gr	464.80 gr	923.50 gr
Peso del recipient	e + muestra d	de 1/2"	2500.00 gr	2500.00 gr	2500.00 gr
Peso del recipient	e + muestra d	de 3/8"	2500.00 gr	2500.00 gr	2500.00 gr
Peso del recipient	e + muestra i	nicial	5923.60 gr	5464.80 gr	5923.50 gr
(Después del seca	do)				
Peso de muestra s			4626.00 gr	4247.50 gr	4623.20 gr
#12, después del lavado + recipiente					
Peso de muestra seca que pasa el tamiz			1297.60 gr	1217.30 gr	1300.30 gr
#12, después del lavado.					
Pérdida			21.91%	22.28%	21.95%
Porcentaje Promedio				22.04%	

OBSERVACIONES: Este ensayo fue realizado al agregado grueso tal y como se extrajo de la cantera. Además, se debe indicar que se utilizó la gradación B la cual se encuentra en la normativa anteriormente indicada.

Alex Ricardo Cleza Silva EMCARGADO DE LABORATORIO DE ENSAYO DE MATERIALES

Resp. Laboratorio

CCAUDA E BENAVIDEZ NUNEZ
INGENIERA CIVIL
Reg. CIP. Nº 176824

LABORATORIO DE MATERIALES



INFORME DE ENSAYO

Análisis Granulométrico del Agregado Grueso - Reciclado

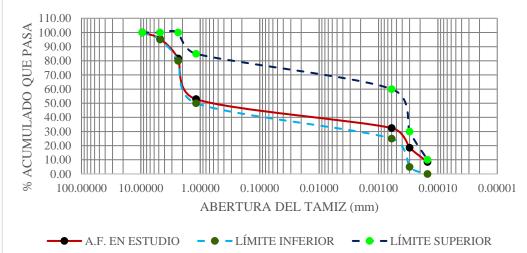
ORIGE	ORIGEN: Triturado de concreto reciclado de pavimentación						
	DE LA MUESTRA						
	ADO POR:			nández Pérez			
	A TÉCNICA:			0.012: 2018			
	DA DE LA MUES	TDA EN POD			0.00		
FECHA		TRA ENTOR		Julio del 2019	0.00		
			1		I		
N°	Abertura del	Masa	% Retenido	% Retenido	% Que Pasa		
Tamiz	Tamiz (mm)	Retenida		Acumulado	Acumulado		
2"	50.00 mm	0.00 gr	0.00%	0.00%	100.00%		
1 1/2"	37.50 mm	0.00 gr	0.00%	0.00%	100.00%		
1"	25.00 mm	957.91 gr	9.58%	9.58%	90.42%		
3/4"	19.00 mm	3941.35 gr	39.41%	48.99%	51.01%		
1/2"	12.50 mm	3917.00 gr	39.17%	88.16%	11.84%		
3/8"	9.50 mm	834.10 gr	8.34%	96.50%	3.50%		
# 4	4.75 mm	287.60 gr	2.88%	99.38%	0.62%		
Fondo		62.00 gr	0.62%	100.00%	0.00%		
Total Fin	nal (Peso después	9999.96 gr	100.00%				
de	l tamizado)						
Tam	naño Máximo	1"					
Nor	minal (TMN)	1"					

CURVA GRANULOMÉTRICA

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado después de tamizado en tamiz de 3/8".

Resp. Laboratorio

CTAUDA E SENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824



Análisis Granulométrico del Agregado Fino - Reciclado

ORIGE	N T	Triturado de concreto reciclado de pavimentación					
PESO D	DE LA MUESTRA	·:	10	000 gr			
	ADO POR:			rnández Pérez			
NORM	A TÉCNICA:		NTP 400	0.012: 2018			
PÉRDII	DA DE LA MUES	TRA EN POR	CENTAJE (%): (0.01		
FECHA	:		17 y 18 de	Julio del 2019			
N°	Abertura del	Masa	% Retenido	% Retenido	% Que Pasa		
Tamiz	Tamiz (mm)	Retenida		Acumulado	Acumulado		
3/8"	9.50 mm	0.00 gr	0.00%	0.00%	100.00%		
# 4	4.75 mm	45.20 gr	4.52%	4.52%	95.48%		
# 8	2.36 mm	138.40 gr	13.84%	18.36%	81.64%		
# 16	1.18 mm	287.50 gr	28.75%	47.11%	52.89%		
# 30	600.00 um	204.60 gr	20.46%	67.58%	32.42%		
# 50	300.00 um	138.60 gr	13.86%	81.44%	18.56%		
# 100	150.00 um	101.30 gr	10.13%	91.57%	8.43%		
Fondo		84.40 gr	8.43%	100.00%	0.00%		
Total Final (Peso después 999.90 gr 100.00%							
de	el tamizado)						
Módulo	o de Finura (MF)	3.11					

CURVA GRANULOMÉTRICA

OBSERVACIONES: Este ensayo fue realizado al agregado fino reciclado después de tamizado por el tamiz de 3/8".

Resp. Laboratorio

CAUDIA E BENAVIDEZ NUNEZ
INGENIERA CIVIL
Reg. CIP. Nº 176824

Método de Ensayo Normalizado para el Contenido de Humedad Total Evaporable del Agregado Grueso - Reciclado por secado

ORIGEN:	Tr	Triturado de concreto reciclado de pavimentación				
PESO DE LA M	UESTRA:		Para cada E	Ensayo 5000 gr		
ENSAYADO PO	R:		Neyser Fei	rnández Pérez		
NORMA TÉCNI	CA:		NTP 339	9.185: 2018		
FECHA:		30 d	e setiembre y (1 de octubre d	lel 2019	
Descripción			Datos y Resultados			
Muestra			01	02	03	
Peso del recipiento	e		464.70 gr	882.00 gr	464.70 gr	
Peso del recipiente	e + muestra l	númeda	5464.70 gr	5882.00 gr	5464.70 gr	
Peso del recipiente	e + muestra s	eca	5217.90 gr	5646.60 gr	5224.70 gr	
Peso de la muestra	ı húmeda ori	ginal	5000.00 gr	5000.00 gr	5000.00 gr	
Peso de la muestra seca		4753.20 gr	4764.60 gr	4760.00 gr		
Peso del agua		246.80 gr	235.40 gr	240.00 gr		
Porcentaje de humedad		5.19%	4.94%	5.04%		
Porcentaje de humedad (Promedio)				5.06%		

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado un día antes de realizada la mezcla de concreto.

Alex Ricardo Cleza Silva
Encargado De Laboratorio
OE ENSAVO DE MATERIALES

Resp. Laboratorio

CONUDA E BENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

Método de Ensayo Normalizado para el Contenido de Humedad Total Evaporable del Agregado Fino - Reciclado por secado

ORIGEN:	Tr	Triturado de concreto reciclado de pavimentación				
PESO DE LA M	UESTRA:		Para cada E	nsayo 1000 gr		
ENSAYADO PO	R:		Neyser Fe	nández Pérez		
NORMA TÉCNI	CA:		NTP 339	9.185: 2018		
FECHA:		30 de	e setiembre y (1 de octubre d	lel 2019	
Descripción			Datos y Resultados			
Muestra		01	02	03		
Peso del recipiente	e		89.10 gr	91.10 gr	93.20 gr	
Peso del recipiento	e + muestra l	númeda	1089.10 gr	1091.10 gr	1093.20 gr	
Peso del recipiente	e + muestra s	eca	1058.30 gr	1061.70 gr	1063.10 gr	
Peso de la muestra	húmeda ori	ginal	1000.00 gr	1000.00 gr	1000.00 gr	
Peso de la muestra seca		969.20 gr	970.60 gr	969.90 gr		
Peso del agua		30.80 gr	29.40 gr	30.10 gr		
Porcentaje de humedad		3.18%	3.03%	3.10%		
Porcentaje de hum	edad (Prome	edio)		3.10%		

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado un día antes de realizada la mezcla de concreto.

Resp. Laboratorio

Método de Ensayo Normalizado para Determinar Materiales más Finos que Pasan por el Tamiz Normalizado 75 μm (N.º 200) por Lavado en el Agregado Grueso - Reciclado

ORIGEN:	Tr	Triturado de concreto reciclado de pavimentación				
PESO DE LA M	UESTRA:		Para cada E	Ensayo 3500 gr		
ENSAYADO PO	R:		Neyser Fe	rnández Pérez		
NORMA TÉCNI	CA:		NTP 400	0.018: 2018		
FECHA:			22 y 23 de set	tiembre del 20	19	
Descripción			D	atos y Resulta	dos	
Muestra	Muestra		01	02	03	
Peso del recipiento	e		464.70 gr	881.50 gr	464.90 gr	
Peso del recipiento	e + muestra		3964.70 gr	4381.50 gr	3964.90 gr	
Peso seco de la m	uestra origina	al	3500.00 gr	3500.00 gr	3500.00 gr	
Peso del recipiento	e + muestra l	avada seca	3955.20 gr	4371.70 gr	3954.90 gr	
Peso seco de la m	uestra ensaya	ıda	3490.50 gr	3490.20 gr	3490.00 gr	
Material que pasa la malla # 200		9.50 gr	9.80 gr	10.00 gr		
Porcentaje que pasa la malla # 200		0.27%	0.28%	0.29%		
Porcentaje promedio que pasa la malla # 200				0.28%		

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado siguiendo normativa.

Alex Ricardo Cleza Silva
encargado de Laboratorio
of ensayo de materiales

Resp. Laboratorio

CCAUDA E BENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar Materiales más Finos que Pasan por el Tamiz Normalizado 75 μm (N.º 200) por Lavado en el Agregado Fino - Reciclado

ORIGEN:	Triturado de concreto reciclado de pavimentación					
PESO DE LA M	UESTRA:		Para cada E	nsayo 1000 gr		
ENSAYADO PO	R:		Neyser Fe	nández Pérez		
NORMA TÉCNI	CA:		NTP 400	0.018: 2018		
FECHA:			22 y 23 de set	iembre del 20	19	
Descripción			Datos y Resultados			
Muestra			01	02	03	
Peso del recipiente	e		159.90 gr	149.30 gr	159.70 gr	
Peso del recipiento	e + muestra		1159.90 gr	1149.30 gr	1159.70 gr	
Peso seco de la m	uestra origina	al	1000.00 gr	1000.00 gr	1000.00 gr	
Peso del recipiento	e + muestra 1	avada seca	1099.60 gr	1088.30 gr	1099.20 gr	
Peso seco de la m	uestra ensaya	ıda	939.70 gr	939.00 gr	939.50 gr	
Material que pasa la malla # 200			60.30 gr	61.00 gr	60.50 gr	
Porcentaje que pasa la malla # 200			6.03%	6.10%	6.05%	
Porcentaje promedio que pasa la malla # 200			6.06%			

OBSERVACIONES: Este ensayo fue realizado al agregado fino reciclado de acuerdo a normativa.

Alex Ricardo Cieza Silva Encargado de Laboratorio De Ensavo de Materiales

Resp. Laboratorio

CCAUTA E SERAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. N° 176824

<u>Método de Ensayo Normalizado para Determinar la Densidad, la</u> <u>Densidad Relativa (Peso Específico) del Agregado Grueso - Reciclado</u>

ORIGEN:	Triturado de concreto reciclado de pavimentación				
PESO DE LA M	UESTRA:	Para cada Ensayo 4000 gr			
ENSAYADO PO	R:	Neyser Fernández Pérez			
NORMA TÉCNI	CA:	N	NTP 400.021: 20	18	
FECHA:		23, 24	4 y 25 de julio de	el 2019	
Descr	ripción	Ι	Oatos y Resultad	os	
Muestra		01	02	03	
Peso del recipiente		1018.00 gr	1018.00 gr	1018.00 gr	
Peso de la muestra i	nicial + recipiente	5018.00 gr	5018.00 gr	5018.00 gr	
Peso de la muestra s	eca en el aire	4000.00 gr	4000.00 gr	4000.00 gr	
Peso de la muestra con superficie seca + recipiente		5182.20 gr	5182.20 gr	5182.00 gr	
Peso de la muestra saturada superficialmente seca en el aire		4164.20 gr	4164.20 gr	4164.00 gr	
Peso en el agua de la		2370.90 gr	2366.70 gr	2368.70 gr	
Peso final de la mue	stra + recipiente	4729.40 gr	4099.60 gr	34726.90 gr	
Peso final de la m estufa	uestra después de la	3847.80 gr	3842.00 gr	33845.30 gr	
Densidad del agua		998.766	998.766	998.766 kg/m3	
		kg/m3	kg/m3		
Peso específico de n	nasa (pem)	2227.77	2222.57	2225.29 kg/m3	
		kg/m3	kg/m3		
	masa saturada con	2319.22	2313.80	2316.53 kg/m3	
superficie seca (PeS	,	kg/m3	kg/m3		
Peso específico apar	rente (Pea)	2452.31	2446.01	2449.01 kg/m3	
		kg/m3	kg/m3		
Peso específico de masa (pem) Promedio			2225.21 kg/m3		
Peso específico de masa saturada con superficie seca (PeSSS) Promedio		2316.52 kg/m3			
Peso específico aparente (Pea) Promedio		2449.11 kg/m3			

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado de acuerdo a normativa.

Alex Ricardo Cleza Silva Encargado De Laboratorio OE ENSAYO DE MATERIALES

Resp. Laboratorio

COUDA E BENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar la Absorción del Agregado Grueso - Reciclado

ORIGEN:	Triturado de concreto reciclado de pavimentación				
PESO DE LA M	UESTRA:		Para cada E	nsayo 4000 gr	
ENSAYADO PO	R:		Neyser Fe	nández Pérez	
NORMA TÉCNI	CA:		NTP 400	0.021: 2018	
FECHA:			23, 24 y 25 d	le julio del 201	9
De	scripción		D	atos y Resulta	dos
Muestra	Muestra		01	02	03
Peso del recipiento	e		1018.00 gr	1018.00 gr	1018.00 gr
Peso de la muestra	a inicial + rec	cipiente	5018.00 gr	5018.00 gr	5018.00 gr
Peso de la muestra	a seca en el a	ire	4000.00 gr	4000.00 gr	4000.00 gr
Peso de la muestra recipiente	a con superfic	cie seca +	5182.20 gr	5181.90 gr	5182.00 gr
Peso de la muestra	a saturada		4164.20 gr	4163.90 gr	4164.00 gr
superficialmente s	eca en el aire	2			
Peso final de la m	Peso final de la muestra + recipiente			4099.60 gr	34726.90 gr
Peso final de la muestra después de la estufa		3847.80 gr	3842.00 gr	33845.30 gr	
Absorción (Ab)		4.11%	4.10%	4.10%	
Absorción (Ab) Pr	romedio			4.10%	

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado de acuerdo a normativa.

Alex Ricardo Cieza Silva
ERCARGADO DE LABORATORIO
OE ENSAYO DE MATERIALES

Resp. Laboratorio

CCAUDA E SENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

<u>Método de Ensayo Normalizado para Determinar la Densidad, la Densidad Relativa (Peso Específico) del Agregado Fino - Reciclado.</u>

ORIGEN:	Triturado de concreto reciclado de pavimentación					
PESO DE LA M	UESTRA:	Ensayo de 1000 gr y 2 ensayos de 500 gr				
ENSAYADO PO	R:	Ney	yser Fernández F	Pérez		
NORMA TÉCNI	CA:	N	NTP 400.022: 20	18		
FECHA:		23, 24	4 y 25 de julio de	el 2019		
Descr	ripción	Ι	Datos y Resultad	os		
Muestra		01	02	03		
Peso de la muestra	a de saturado	500.00 gr	1000.00 gr	500.00 gr		
superficialmente s	eca (S)					
Peso de la fiola		183.10 gr	273.90 gr	183.00 gr		
Peso de la fiola lle	enado con agua	682.48 gr	1272.67 gr	682.38 gr		
hasta la marca de	calibración (B)					
	eno de la muestra y	961.40 gr	1829.40 gr	961.80 gr		
	arca de calibración					
(C)						
Peso de la tara		151.30 gr	160.30 gr	151.20 gr		
Peso final de la m	uestra seca + tara	604.10 gr	1064.50 gr	603.80 gr		
Peso de la muestra	a seca en el horno	452.80 gr	904.20 gr	452.60 gr		
(A)						
Densidad del agua	l	0.999 gr/cm3	0.999 gr/cm3	0.999 gr/cm3		
Densidad (Pem)		2.05 gr/cm3	2.04 gr/cm3	2.05 gr/cm3		
Densidad (Pess)		2.26 gr/cm3	2.25 gr/cm3	2.26 gr/cm3		
Densidad aparente	e (Pea)	2.60 gr/cm3	2.60 gr/cm3	2.61 gr/cm3		
Densidad (Seca en el horno)		2.04 gr/cm3				
Promedio						
Densidad (Saturada superficialmente		2.26 gr/cm3				
seca) Promedio						
Densidad aparente	e Promedio		2.60 gr/cm3			

OBSERVACIONES: Este ensayo fue realizado al agregado fino reciclado por el método volumétrico.

Alex Ricardo Cleza Silva encargado de Laboratorio DE ENSAVO DE MATERIALES

Resp. Laboratorio

CLAUDA E GENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. N° 176824

Método de Ensayo Normalizado para Determinar la Absorción del Agregado Fino - Reciclado

ORIGEN:	Triturado de concreto reciclado de pavimentación					
PESO DE LA M	UESTRA:	Ensayo de 10	000 gr y 2 ensayo	s de 500 gr		
ENSAYADO PO	R:	Neys	ser Fernández Pér	ez		
NORMA TÉCNI	CA:	N'	TP 400.022: 2018	}		
FECHA:		23, 24	y 25 de julio del 2	2019		
Descr	ipción	Datos y Resultados				
Muestra		01	02	03		
Peso de la muestra superficialmente s		500.00 gr	1000.00 gr	500.00 gr		
Peso de la tara		151.30 gr	160.30 gr	151.20 gr		
Peso final de la m	uestra seca + tara	604.10 gr	1064.50 gr	603.80 gr		
Peso de la muestra seca en el horno (A)		452.80 gr	904.20 gr	452.60 gr		
Absorción (Ab)		10.42%	10.60%	10.47%		
Absorción (Ab) Pr	romedio	10.50%				

OBSERVACIONES: Este ensayo fue realizado al agregado fino reciclado de acuerdo a normativa.

Alex Ricardo Cleza Silva
Encargado de Laboratorio
OE ENSAYO DE MATERIALES

Resp. Laboratorio

INSENIERA CIVIL Reg. CIP. N° 176824

Método de Ensayo Normalizado para Determinar la Masa por Unidad de Volumen o Densidad ("Peso Unitario") del Agregado Grueso - Reciclado

ORIGEN:	Tr	iturado de concreto reciclado de pavimentación					
ENSAYADO PO	R:	Ne	yser Fernández Pér	ez			
NORMA TÉCNI	CA:]	NTP 400.017: 2011				
FECHA:		22 y	23 de agosto del 2	019			
		Peso Unitario Su	ielto				
Descripci	ón		Datos y Resultados				
Muestra		01	02	03			
Peso del molde		4.72 kg	4.72 kg	4.72 kg			
Peso del molde +	material	15.33 kg	15.40 kg	15.45 kg			
Volumen del molo	le	0.00938 m3	0.00938 m3	0.00938 m3			
Peso del material		10.61 kg	10.68 kg	10.73 kg			
Densidad de masa		1130.94 kg/m3	1138.40 kg/m3	1143.73 kg/m3			
Densidad de masa			1137.69 kg/m3				
(Promedio)							
		Peso Unitario Van	riado				
Descripci	ón		Datos y Resultados				
Muestra		01	02	03			
Peso del molde		4.72 kg	4.72 kg	4.72 kg			
Peso del molde +	material	15.92 kg	15.90 kg	16.02 kg			
Volumen del molo	le	0.00938 m3	0.00938 m3	0.00938 m3			
Peso del material		11.20 kg	11.18 kg	11.30 kg			
Densidad de masa		1193.83 kg/m3	1191.70 kg/m3	1204.49 kg/m3			
Densidad de masa		1196.67 kg/m3					
(Promedio)			•				

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado de acuerdo a normativa.

Alex Ricardo Cieza Silva
encareado De Laboratorio
Of Ensayo De Materiales

Resp. Laboratorio

CCAUDA E BENAVIDEZ NUNEZ
INGENIERA CIVIL
Reg. CIP. N° 176824

LABORATORIO DE MATERIALES

Método de Ensayo Normalizado para Determinar la Masa por Unidad de Volumen o Densidad ("Peso Unitario") del Agregado Fino - Reciclado

ORIGEN:	Triturado de concreto reciclado de pavimentación						
ENSAYADO POI		Neyser Fernández Pérez					
NORMA TÉCNIO			NTP 400.017: 2011	CZ			
	CA:			0.1.0			
FECHA:		22 y	23 de agosto del 2	019			
		Peso Unitario Su	ielto				
Descripcio	ón		Datos y Resultados				
Muestra		01	02	03			
Peso del molde		1.66 kg	1.66 kg	1.66 kg			
Peso del molde + r	naterial	5.44 kg	5.43 kg	5.41 kg			
Volumen del mold	e	0.00280 m3	0.00280 m3	0.00280 m3			
Peso del material		3.78 kg	3.77 kg	3.75 kg			
Densidad de masa		1352.21 kg/m3	1352.21 kg/m3 1349.20 kg/m3 1340				
Densidad de masa		1347.45 kg/m3					
(Promedio)							
		Peso Unitario Va	riado				
Descripcio	ón		Datos y Resultados				
Muestra		01	02	03			
Peso del molde		1.66 kg	1.66 kg	1.66 kg			
Peso del molde + r	naterial	5.71 kg	5.71 kg	5.72 kg			
Volumen del mold	e	0.00280 m3	0.00280 m3	0.00280 m3			
Peso del material		4.05 kg	4.05 kg	4.06 kg			
Densidad de masa		1449.82 kg/m3	1448.18 kg/m3	1453.44 kg/m3			
Densidad de masa		1450.48 kg/m3					
(Promedio)			-				

OBSERVACIONES: Este ensayo fue realizado al agregado fino reciclado de acuerdo a normativa.

Alex Ricardo Cieza Silva encardado e Laboratorio DE ENSAYO DE MATERIALES

Resp. Laboratorio

CLAUDA E SENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. Nº 176824

Método de Ensayo Normalizado para Determinar la Resistencia a la Degradación en el Agregado Grueso - Reciclado por Abrasión e Impacto en la Máquina de Los Ángeles

ORIGEN:	Triturado de concreto reciclado de pavimentación						
ENSAYADO PO	R:		Neyser Fe	nández Pérez			
NORMA TÉCNI	CA:		NTP 400	0.019: 2014			
FECHA:			19, 20 y 21 de	e agosto de 201	19		
De	scripción		D	atos y Resultad	dos		
Muestra			01	02	03		
Peso del recipiento	e		923.70 gr	881.50 gr	923.50 gr		
Peso del recipiento	e + muestra c	de 1/2"	2500.00 gr	2500.00 gr	2500.00 gr		
Peso del recipiente	e + muestra c	de 3/8"	2500.00 gr	2500.00 gr	2500.00 gr		
Peso del recipiento (Después del seca		nicial	5923.70 gr	5881.50 gr	5923.50 gr		
Peso de muestra seca que no pasa el tamiz #12, después del lavado + recipiente			3964.20 gr	3943.30 gr	3964.90 gr		
Peso de muestra se #12, después del la	muestra seca que pasa el tamiz		1959.50 gr	1938.20 gr	1958.60 gr		
Pérdida			33.08%	32.95%	33.06%		
Porcentaje Promeo	dio	33.03%					

OBSERVACIONES: Este ensayo fue realizado al agregado grueso reciclado y se debe indicar que se utilizó la gradación B la cual se encuentra en la normativa anteriormente indicada.

Alex Ricardo Cleza Silva Encargado de Laboratorio DE ENSAYO DE MATERIALES

Resp. Laboratorio

CCAUTA E BENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. N° 176824

Ensayo de compresión Axial

ENSAYADO POR:		Neyser Fer	nández Pérez	Z	
NORMAS TÉCNICAS:		NTP 339.034: 2015			
DISEÑO:	PP				
Descripción		Date	os y Resultad	os	
Probeta N°	PP-01	PP-02	PP-03	PP-04	PP-05
Fecha de fabricación			02/10/2019		
Fecha de ruptura			09/10/2019		
Edad	7	7	7	7	7
Diámetro (cm)	15.6	15.6	15.6	15.6	15.4
Alto (cm)	30.5	30.6	30.5	30.5	30.6
Área (cm ²)	191.13	191.13	191.13	191.13	186.27
Peso de la muestra (Kg)	13.6	13.46	13.55	13.5	13.63
Carga (Kgf)	42475	43837	43740	44110	43018
Resistencia (kgf/cm²)	222.2	229.4	228.8	230.8	231.0
Resistencia (Promedio) (kgf/cm²)			228.4		
DISEÑO			PP - 1	10%	
Descripción		Date	os y Resultad	os	
Probeta N°	PP-10%- 01	PP-10%- 02	PP-10%- 03	PP-10%- 04	PP- 10%-05
Fecha de fabricación			03/10/2019		
Fecha de ruptura			10/10/2019		
Edad (días)	7	7	7	7	7
Diámetro (cm)	15.5	15.6	15.6	15.5	15.6
Alto (cm)	30.5	30.6	30.5	30.5	30.6
Área (cm²)	188.69	191.13	191.13	188.69	191.13
Peso de la muestra (kg)	13.66	13.69	13.7	13.66	13.67
Carga (kgf)	39885	48294	43121	40885	42972
Resistencia (kgf/cm²)	211.4	252.7	225.6	216.7	224.8
Resistencia (Promedio) (kgf/cm²)			219.6		

Resp. Laboratorio

CCAUTA E BENAVIDEZ NUNEZ INGENIERA CIVIL Reg. CIP. N° 176824

Ensayo de compresión Axial

ENSAYADO POR:	Neyser Fernández Pérez NTP 339.034: 2015					
NORMAS TÉCNICAS:						
DISEÑO:		PP				
Descripción		Date	s y Resultado	OS		
Probeta N°	PP-06	PP-06 PP-07 PP-08 PP-09 1				
Fecha de fabricación			02/10/2019			
Fecha de ruptura			16/10/2019			
Edad	14	14	14	14	14	
Diámetro (cm)	15.6	15.6	15.5	15.4	15.5	
Alto (cm)	30.5	30.5	30.6	305	30.5	
Área (cm²)	191.13	191.13	188.69	186.27	188.69	
Peso de la muestra (Kg)	13.74	13.60	13.62	13.67	13.56	
Carga (Kgf)	43740	51752	48018	48018	49554	
Resistencia (kgf/cm²)	228.8	270.8	254.5	257.8	262.6	
Resistencia (Promedio) (kgf/cm²)			261.4			
DISEÑO			PP - 2:	5%		
Descripción		Date	s y Resultado	os		
Probeta N°	PP-25%-01	PP-25%-02	PP-25%-03	PP-25%- 04	PP-25%- 05	
Fecha de fabricación			09/10/2019			
Fecha de ruptura			16/10/2019			
Edad (días)	7	7	7	7	7	
Diámetro (cm)	15.5	15.5	15.5	15.5	15.5	
Alto (cm)	30.5	30.5	30.6	30.5	30.5	
Área (cm²)	188.69	188.69	188.69	188.69	188.69	
Peso de la muestra (kg)	13.70	13.70	13.67	13.69	13.60	
Carga (kgf)	47880	36880	38578	37887	39460	
Resistencia (kgf/cm ²)	253.7	195.5	204.4	200.8	209.1	
Resistencia (Promedio) (kgf/cm²)		•	202.5			

Resp. Laboratorio

Ensayo de compresión Axial

ENSAYADO POR:	Neyser Fernández Pérez				
NORMAS TÉCNICAS:		NTP 339.034: 2015			
DISEÑO:		PP - 50%			
Descripción		Date	s y Resultad	os	
Probeta N°	PP-50%-01	PP-50%-02	PP-50%- 03	PP-50%- 04	PP-50%- 05
Fecha de fabricación			10/10/2019		
Fecha de ruptura			17/10/2019		
Edad	7	7	7	7	7
Diámetro (cm)	15.6	15.6	15.6	15.6	15.5
Alto (cm)	30.5	30.6	30.5	30.5	30.6
Área (cm²)	191.13	191.13	191.13	191.13	188.69
Peso de la muestra (Kg)	13.31	13.39	13.40	13.38	13.38
Carga (Kgf)	41366	37381	38281	37856	32700
Resistencia (kgf/cm ²)	216.4	195.6	200.3	198.1	173.3
Resistencia (Promedio) (kgf/cm²)			191.8		
DISEÑO			PP - 1	0%	
Descripción		Date	s y Resultad	os	
Probeta N°	PP-10%-06	PP-10%-07	PP-10%-08	PP-10%- 09	PP-10%- 10
Fecha de fabricación			03/10/2019		
Fecha de ruptura			17/10/2019		
Edad (días)	14	14	14	14	14
Diámetro (cm)	15.6	15.5	15.5	15.4	15.6
Alto (cm)	30.6	30.5	30.5	30.5	30.5
Área (cm²)	191.13	188.69	188.69	186.27	191.13
Peso de la muestra (kg)	13.74	13.71	13.70	13.68	13.64
Carga (kgf)	48975	47291	47920	47018	54116
Resistencia (kgf/cm ²)	256.2	250.6	254.0	252.4	283.1
Resistencia (Promedio) (kgf/cm²)			253.3		

Resp. Laboratorio

Ensayo de compresión Axial

ENSAYADO POR:	Neyser Fernández Pérez						
NORMAS TÉCNICAS:	NORMAS TÉCNICAS: NTP 33			34: 2015			
DISEÑO:			PP -	75%			
Descripción		Date	os y Resulta	dos			
Probeta N°	PP-75%-01	PP-75%-02	PP-75%- 03	PP-75%-04	PP-75%- 05		
Fecha de fabricación			14/10/2019				
Fecha de ruptura			21/10/2019				
Edad	7	7	7	7	7		
Diámetro (cm)	15.5	15.6	15.6	15.6	15.5		
Alto (cm)	30.5	30.5	30.5	30.5	30.6		
Área (cm²)	188.69	191.13	191.13	191.13	188.69		
Peso de la muestra (Kg)	13.05	13.08	13.04	13.03	13.03		
Carga (Kgf)	31416	43252	32054	32980	30845		
Resistencia (kgf/cm ²)	166.5	226.3	167.7	172.5	163.5		
Resistencia (Promedio) (kgf/cm²)			167.6				
DISEÑO			PP -	25%			
Descripción		Date	os y Resulta	dos			
Probeta N°	PP-25%-06	PP-25%-07	PP-25%-08	PP-25%- 09	PP-25%- 10		
Fecha de fabricación			09/10/2019				
Fecha de ruptura			23/10/2019				
Edad (días)	14	14	14	14	14		
Diámetro (cm)	15.6	15.6	15.5	15.6	15.6		
Alto (cm)	30.5	30.6	30.5	30.5	30.5		
Área (cm²)	191.13	191.13	188.69	191.13	191.13		
Peso de la muestra (kg)	13.68	13.88	13.57	13.72	13.69		
Carga (kgf)	45826	56719	43487	47281	45185		
Resistencia (kgf/cm ²)	239.8	296.7	230.5	247.4	236.4		
Resistencia (Promedio) (kgf/cm²)			238.5				

Resp. Laboratorio

Ensayo de compresión Axial

ENSAYADO POR:	Neyser Fernández Pérez				
NORMAS TÉCNICAS: NTP 339.034: 201:		34: 2015	2015		
DISEÑO:		PP - 50%			
Descripción		Date	os y Resulta	dos	
Probeta N°	PP-50%-06	PP-50%-07	PP-50%- 08	PP-50%-09	PP-50%- 10
Fecha de fabricación			10/10/2019		
Fecha de ruptura			24/10/2019		
Edad	14	14	14	14	14
Diámetro (cm)	15.6	15.6	15.5	15.6	15.6
Alto (cm)	30.5	30.6	30.6	30.5	30.5
Área (cm²)	191.13	191.13	188.69	191.13	191.13
Peso de la muestra (Kg)	13.41	13.37	13.43	13.50	13.53
Carga (Kgf)	43075	42295	41366	40415	32575
Resistencia (kgf/cm ²)	225.4	221.3	219.2	211.4	170.4
Resistencia (Promedio) (kgf/cm²)			219.3		
DISEÑO			I	PR	
Descripción		Date	os y Resulta	dos	
Probeta N°	PR-01	PR-02	PR-03	PR-04	PR-05
Fecha de fabricación			18/10/2019		
Fecha de ruptura			25/10/2019		
Edad (días)	7	7	7	7	7
Diámetro (cm)	15.5	15.5	15.6	15.6	15.6
Alto (cm)	30.5	30.5	30.6	30.5	30.5
Área (cm²)	188.69	188.69	191.13	191.13	191.13
Peso de la muestra (kg)	12.87	12.87	12.90	12.85	12.84
Carga (kgf)	29468	29511	32570	31390	35306
Resistencia (kgf/cm ²)	156.2	156.4	170.4	164.2	184.7
Resistencia (Promedio) (kgf/cm²)			166.4		

Resp. Laboratorio

Ensayo de compresión Axial

ENSAYADO POR:	Neyser Fernández Pérez					
NORMAS TÉCNICAS:		NTP 339.034: 2015				
DISEÑO:		PP - 75%				
Descripción		Date	os y Resulta	idos		
Probeta N°	PP-75%-06	PP-75%-06 PP-75%-07 PP-75%- PP-75%-09 PP-				
Fecha de fabricación			14/10/2019			
Fecha de ruptura			28/10/2019			
Edad	14	14	14	14	14	
Diámetro (cm)	15.5	15.6	15.6	15.6	15.6	
Alto (cm)	30.5	30.5	30.5	30.5	30.6	
Área (cm²)	188.69	191.13	191.13	191.13	191.13	
Peso de la muestra (Kg)	13.17	13.04	13.12	13.07	13.00	
Carga (Kgf)	38447	49407	41075	38110	40373	
Resistencia (kgf/cm ²)	203.8	258.5	214.9	199.4	211.2	
Resistencia (Promedio) (kgf/cm²)			207.3			
DISEÑO			I	PP		
Descripción		Date	os y Resulta	idos		
Probeta N°	PP-11	PP-12	PP-13	PP-14	PP-15	
Fecha de fabricación			02/10/2019			
Fecha de ruptura			30/10/2019			
Edad (días)	28	28	28	28	28	
Diámetro (cm)	15.5	15.590	15.5	15.5	15.5	
Alto (cm)	30.6	30.6	30.5	30.6	30.5	
Área (cm²)	188.69	190.89	188.69	188.69	188.69	
Peso de la muestra (kg)	13.54	13.63	13,69	13.62	13.74	
Carga (kgf)	52048	57386	53780	55640	55431	
Resistencia (kgf/cm²)	275.8	300.6	285.0	294.9	293.8	
Resistencia (Promedio) (kgf/cm²)			290.0			

Resp. Laboratorio

Ensayo de compresión Axial

ENSAYADO POR: Neyse			Neyser Fernández Pérez			
NORMAS TÉCNICAS:	RMAS TÉCNICAS: NTP 339.034: 2015					
DISEÑO:			PP -	- 10%		
Descripción		Date	os y Resulta	idos		
Probeta N°	PP-10%-11	PP-10%-12	PP-10%- 13	PP-10%-14	PP-10%- 15	
Fecha de fabricación			03/10/2019			
Fecha de ruptura			31/10/2019			
Edad	28	28	28	28	28	
Diámetro (cm)	15.6	15.600	15.6	15.6	15.6	
Alto (cm)	30.5	30.5	30.5	30.5	30.5	
Área (cm²)	191.13	191.13	191.13	191.13	191.13	
Peso de la muestra (Kg)	13.84	13.67	13.64	13.65	13.69	
Carga (Kgf)	58422	53837	54116	55320	55185	
Resistencia (kgf/cm²)	305.7	281.7	283.1	289.4	288.7	
Resistencia (Promedio) (kgf/cm²)			285.7			
DISEÑO			I	PR		
Descripción		Date	os y Resulta	idos		
Probeta N°	PR-06	PR-07	PR-08	PR-09	PR-10	
Fecha de fabricación			18/10/2019	•		
Fecha de ruptura			01/11/2019			
Edad (días)	14	14	14	14	14	
Diámetro (cm)	15.5	15.5	15.6	15.6	15.5	
Alto (cm)	30.5	30.5	30.5	30.5	30.6	
Área (cm²)	188.69	188.69	191.13	191.13	188.69	
Peso de la muestra (kg)	13.00	12.89	12.84	12.95	12.63	
Carga (kgf)	46606	38007	40970	41130	41689	
Resistencia (kgf/cm ²)	247.0	201.4	214.4	215.2	220.9	
Resistencia (Promedio) (kgf/cm²)			213.0	•		

Resp. Laboratorio

Ensayo de compresión Axial

ENSAYADO POR:		Neyser Fernández Pérez				
NORMAS TÉCNICAS:		NTP 339.034: 2015				
DISEÑO:			PP -	25%		
Descripción		Date	os y Resulta	idos		
Probeta N°	PP-25%-11	PP-25%-11 PP-25%-12 PP-25%- 13 PP-25%-14				
Fecha de fabricación			09/10/2019			
Fecha de ruptura			06/11/2019			
Edad	28	28	28	28	28	
Diámetro (cm)	15.6	15.500	15.5	15.6	15.5	
Alto (cm)	30.5	30.5	30.5	30.6	30.5	
Área (cm²)	191.13	188.69	188.69	191.13	188.69	
Peso de la muestra (Kg)	13.57	13.57	13.54	13.59	13.60	
Carga (Kgf)	50487	48281	52048	53890	56712	
Resistencia (kgf/cm ²)	264.1	255.9	275.8	281.9	300.6	
Resistencia (Promedio) (kgf/cm²)			269.4			
DISEÑO			PP -	50%		
Descripción		Date	os y Resulta	idos		
Probeta N°	PP-50%-11	PP-50%-12	PP-50%-13	PP-50%-	PP-50%- 15	
Fecha de fabricación			10/10/2019			
Fecha de ruptura			07/11/2019			
Edad (días)	28	28	28	28	28	
Diámetro (cm)	15.5	15.500	15.6	15.6	15.6	
Alto (cm)	30.6	30.5	30.5	30.6	30.5	
Área (cm²)	188.69	188.69	191.13	191.13	191.13	
Peso de la muestra (kg)	13.50	13.53	13.67	13.64	13.62	
Carga (kgf)	40415	42299	45972	46972	47304	
Resistencia (kgf/cm ²)	214.2	224.2	240.5	245.8	250.7	
Resistencia (Promedio) (kgf/cm²)			240.3			

Resp. Laboratorio

Ensayo de compresión Axial

ENSAYADO POR: Neyser Fernández Pérez					
NORMAS TÉCNICAS:		NTP 339.03	34: 2015		
DISEÑO:		PP - 75%			
Descripción		Date	os y Resulta	dos	
Probeta N°	PP-75%-11	PP-75%-12	PP-75%- 13	PP-75%-14	PP-75%- 15
Fecha de fabricación			14/10/2019		
Fecha de ruptura			11/11/2019		
Edad	28	28	28	28	28
Diámetro (cm)	15.6	15.6	15.6	15.6	15.6
Alto (cm)	30.6	30.6	30.5	30.5	30.6
Área (cm²)	191.13	191.13	191.13	191.13	191.13
Peso de la muestra (Kg)	13.13	12.95	13.08	13.10	13.02
Carga (Kgf)	47458	42000	43252	44282	44042
Resistencia (kgf/cm ²)	248.3	219.7	226.3	231.7	230.4
Resistencia (Promedio) (kgf/cm²)			231.3		
DISEÑO			I	PR	
Descripción		Date	os y Resulta	dos	
Probeta N°	PR-11	PR-12	PR-13	PR-14	PR-15
Fecha de fabricación			18/10/2019		
Fecha de ruptura			15/11/2019		
Edad (días)	28	28	28	28	28
Diámetro (cm)	15.6	15.6	15.5	15.6	15.6
Alto (cm)	30.6	30.6	30.5	30.5	30.6
Área (cm²)	191.13	191.13	188.69	191.13	191.13
Peso de la muestra (kg)	12.81	12.64	13.00	12.88	12.77
Carga (kgf)	45751	42751	46606	43410	44901
Resistencia (kgf/cm ²)	239.4	223.7	247.0	227.1	234.9
Resistencia (Promedio) (kgf/cm²)			234.4		

Resp. Laboratorio

