INFORME FINAL DE INVESTIGACIÓN

EFECTOS DEL PROCESO DE ELABORACIÓN DE QUESO EN EL CONTENIDO PROTEICO Y MICROBIOLOGICO DEL LACTOSUERO.

EQUIPO DE INVESTIGACIÓN:

RESPONSABLE : RUIZ DIAZ Faustino

MIEMBROS : RUBIO CIEZA Mirian Yuliza
 PÉREZ PÉREZ Rubén Darío

CHOTA – CAJAMARCA
2019
ÍNDICE

RESUMEN... 4
ABSTRACT .. 5
INTRODUCCIÓN.. 6
CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA... 7
 1.2. Formulación del problema.. 8
 1.3. Objetivos ... 8
 1.3.1. Objetivo general .. 8
 1.3.2. Objetivos específicos ... 8
 1.4. Justificación .. 8
CAPÍTULO II: MARCO TEÓRICO ... 10
 2.1. Antecedentes ... 10
 2.2. Bases Teóricas .. 13
 2.2.1. Elaboración de queso .. 13
 2.2.2. Recepción .. 15
 2.2.3. Filtrado ... 15
 2.2.4. Pasteurización .. 16
 2.2.5. Lactosuero .. 16
 2.2.6. Caracterización fisicoquímica. .. 17
CAPÍTULO III: METODOLOGÍA DE LA INVESTIGACIÓN ... 23
 3.1. Ámbito de estudio .. 23
 3.2. Materiales y método de investigación .. 23
 3.2.1. Diseño de investigación .. 23
 3.2.2. Población, muestra y muestreo .. 24
 3.2.3. Descripción de la experimentación ... 24
 3.2.4. Técnicas e instrumentos de acopio de datos .. 26
 3.2.5. Procedimiento de recolección de datos ... 26
 3.3. Análisis de información .. 26
CAPÍTULO IV: RESULTADOS .. 27
 4.1. Resultados ... 27
 4.1.1. Resultados del contenido proteico ... 27
 4.1.2. Resultados del contenido microbiológico .. 29
 4.1.3. Resultados del proceso de elaboración del queso ... 31
 4.2. Discusión .. 32
INDICE DE TABLAS

Tabla 1: Leche y Productos Lácteos. Leche Cruda. Requisitos ... 18
Tabla 2: Parámetro y Método de prueba. ... 19
Tabla 3: Especificaciones fisicoquímicas del suero de leche líquido pasteurizado
Parámetro... 20
Tabla 4: Materiales y equipos.. 25
Tabla 5: Resultados del contenido proteico en muestras de suero de queso fresco 27
Tabla 6: Resultados proteicos del suero de queso mozzarella ... 28
Tabla 7: Resultados de las muestras de lactosuero de queso fresco 30
Tabla N° 8: Resultados de las muestras de lactosuero de queso mozzarella............... 31

INDICE DE TABLAS

Figura 1: flujograma de elaboración de queso mozzarella .. 13
Figura 2: Flujograma de elaboración de queso fresco .. 14
Figura 3: Diseño de la investigación .. 23
Figura 4: Comparación de medias del contenido proteico del queso fresco 28
Figura 5: Comparación de medias del contenido proteico del queso mozzarella 29
RESUMEN

El objetivo de este estudio fue determinar cuál es el efecto del proceso de elaboración de queso en el contenido proteico y microbiológico del lactosuero. Se realizó con dos tipos de suero de diferente proceso, suero de queso fresco obtenido en el mercado central de Chota y suero de queso mozzarella de una planta procesadora del distrito de Lajas. Las muestras se recolectaron en frascos de vidrio que luego posteriormente llevamos a refrigeración para finalmente realizar el análisis proteico y microbiológico, se recogió muestras de los 10 puestos de venta del mercado central recolectando tres muestras por cada uno y de la planta procesadora de 7 lotes de producción tomando 3 muestras por cada uno. El análisis proteico se realizó mediante el equipo MILKOTESTER (Master Eco) que se utiliza en análisis proteicos de lácteos, se analizó estadísticamente mediante el software MINITAB 18. El análisis microbiológico se realizó mediante diluciones hasta 10^{-5} que luego se sembró en agar mediante el método por profundidad y superficie para. Los resultados del análisis proteico mostraron que la muestra de suero de queso fresco tuvo un contenido proteico de 0.5 a 1.1% y el lactosuero de mozarella de 0.3 a 0.5% comprobando que el proceso tiene un efecto sobre el contenido proteico debido a que en el proceso de queso mozzarella se emplea una temperatura de 72°C. En cuanto al análisis microbiológico dio como resultado $9,90 \times 10^5$ UFC/ml de la muestra de lactosuero de queso fresco y $5,90 \times 10^3$ UFC/ml en la muestra de lactosuero de queso mozzarella. Siendo el lactosuero de queso tipo fresco el que tuvo alta carga microbiana en comparación al queso mozzarella; pero ambas muestras mostraron altos niveles de contaminación. El proceso junto con la manipulación e indumentaria repercutieron directamente sobre la calidad del lactosuero.

Palabras clave: Suero de leche, queso mozzarella, queso fresco.
ABSTRACT

The objective of this study was to determine the effect of the cheese making process on the protein and microbiological content of the whey. It was made with two types of whey from a different process, fresh cheese whey obtained in the central market of Chota and mozzarella cheese whey from a processing plant in the district of Lajas. The samples were collected in glass jars that we later took to refrigeration to finally perform the protein and microbiological analysis, samples were collected from the 10 central market stalls collecting three samples for each one and from the processing plant of 7 lots of production taking 3 samples for each one. The protein analysis was performed using the MILKOTESTER equipment (Master Eco) that is used in protein analysis of dairy products. The MINITAB 18 software was statistically analyzed. The microbiological analysis was carried out by dilutions up to 10^{-5} which was then sowed in agar by the method by depth and surface for. The results of the protein analysis showed that the sample of fresh cheese whey had a protein content of 0.5 to 1.1% and the whey mozzarella of 0.3 to 0.5% verifying that the process has an effect on the protein content because in the process of mozzarella cheese a temperature of 72 °C is used. Regarding the microbiological analysis, it resulted in 9.90×10^5 CFU / ml of the fresh cheese whey sample and 5.90×10^3 CFU / ml in the mozzarella cheese whey sample. Being the cheese type fresh whey that had high microbial load in comparison to mozzarella cheese; but both samples showed high levels of contamination. The process together with the handling and clothing had a direct impact on the quality of the whey.

Key words: buttermilk, mozzarella cheese, fresh cheese
INTRODUCCIÓN

El suero es un subproducto derivado de la elaboración de diversos tipos de queso, que se da mediante la coagulación de las proteínas (caseína) de la leche resultando un líquido verdoso que es el suero, debido al desconocimiento de su valor nutricional no es aprovechado por quienes realizaban este proceso y es desechado al medio ambiente generando contaminación.

Actualmente se ha iniciado el estudio de su aplicación en diversos productos, debido a su valor nutricional, considerándose un aditivo para enriquecer diversos tipos de alimentos, productos de belleza y en muchas cosas, por sus grandes beneficios que ofrece este subproducto.

La presente investigación se realizó teniendo en cuenta este subproducto (suero) proveniente de dos tipos de queso como es mozzarella y fresco, obtenidos de una planta procesadora de productos lácteos del distrito de Lajas y del mercado Central de la ciudad de Chota. Teniendo en cuenta variables de calidad microbiológica y fisicoquímica. El estudio de contenido de proteína se realizó con el equipo MILKOTESTER el cual se utiliza para análisis proteicos en lácteos.

Este informe muestra los resultados de análisis microbiológicos y proteicos que se realizó con suero proveniente de dos tipos de queso. El análisis microbiológico se realizó por diluciones para ver la cantidad de microrganismos presentes en el suero, para determinar si este se encuentra dentro del rango establecido el cual lo considera no apto para consumo humano, también se muestran resultados del contenido proteico.
CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción del problema

Para elaborar un producto industrial se siguen etapas o operaciones las cuales deben cumplirse protocolos de elaboración y de calidad, ya que las mismas dependerá la calidad final del producto.

Si elaboramos un producto alimentario como es el queso, se siguen determinadas operaciones que influyen directamente sobre su calidad final y de sus subproductos generados; si no se estandariza el protocolo de elaboración, los subproductos como el lactosuero tendrán valores variables de calidad en cuanto a composición y microorganismos (UFC).

El lactosuero tiene diversas aplicaciones industriales y su calidad está directamente relacionada con la forma de producir el tipo de queso. El productor debe conocer las operaciones que se debe aplicar evidenciándose el grado de conocimiento en la calidad del queso y lactosuero obtenido; los efectos pueden ser positivos o negativos.

Al analizar la eliminación del suero se debe entre otros aspectos, al desconocimiento de algunos productores sobre las bondades nutricionales de este subproducto y a la dificultad para acceder a las tecnologías apropiadas para su manejo y procesamiento (Poveda, 2013).

En nuestro distrito no se tienen registros de la calidad del lactosuero, los productores también desconocen de la misma y por consecuencia no saben aprovecharlo, por ello es necesario precisar el contenido proteico y microbiológico que presenta.
1.2. Formulación del problema

¿Cómo afecta el proceso metodológico de elaboración de queso tipo fresco y mozzarella en el contenido proteico y microbiológico del lactosuero?

1.3. Objetivos

1.3.1. Objetivo general

Determinar los efectos del proceso de elaboración de queso tipo fresco y mozzarella en el contenido de proteína y su calidad microbiológica del lactosuero del mercado central de Chota y el distrito de Lajas

1.3.2. Objetivos específicos

- Determinar la cantidad de proteínas en el lactosuero de ambos tipos de queso.
- Determinar la cantidad de Unidades Formadoras de Colonia (UFC) de microorganismos aerobios mesófilos y levaduras-mohos.
- Determinar cómo es el proceso de obtención del lactosuero en ambos tipos de queso.

1.4. Justificación

El proceso de elaboración de queso, tiene determinadas operaciones que repercuten directamente sobre la calidad final tanto del producto como en el subproducto denominado lactosuero.

Estudios muestran que el suero de queso o lactosuero tiene diversas aplicaciones, debido a que presenta un alto valor nutrimental; este ya se ha producido como aditivo y enriquecedor de diversos alimentos: incluyendo sopas, aderezos para ensaladas, carnes y en la elaboración de productos bajos en grasa (McIntosh et al., 1988; Steffl et al., 199; moler y Emmnos, 2001 citado por Teniza, 2008).
Un estudio realizado en España apoyado por el Gobierno Vasco, AZTI, NEIKER-Tecnalia, Iberlact y BM Ingeniería; han encontrado tres aplicaciones al lactosuero tales como: Nuevos alimentos para consumo humano, piensos para animales y producción de biogás (Bilbao, 2016 citado por azti tecnalia 2016).

En el distrito de Chota se produce grandes cantidades de queso y por consecuencia de lactosuero, ya que de cada 10 litros de leche se obtiene aproximadamente 7-8 litros de subproducto. Sabiendo que se tiene importantes aplicaciones, es necesario determinar el efecto del proceso de elaboración en el contenido proteico y el contenido microbiológico para precisar la calidad del mismo.
CAPITULO II: MARCO TEÓRICO

2.1. Antecedentes

Cuaspud (2015) en su investigación de la “Elaboración de bebidas naturales a partir de Taxo (Passiflora Tripartita var. Mollissima) y piña Ananas Comosus) enriquecidas con lactosuero”. Mediante un análisis fisicoquímico y microbiológico practicado al lactosuero obtuvieron varianzas en cuanto a microorganismos y en cuanto a la composición de lactosuero; los valores registrados para el suero dulce son: lactosa, % (p/p) = 3,5 proteína láctea, % (p/p)= 2,21; grasa láctea, %(p/p)= 0,2; ceniza, % (p/p)= 0,51; acidez titulable, % ácido láctico =0,10; pH = 6,53; densidad, g/ml = 1,0262; recuento de microorganismos aerobios mesófilos ufc/g <10; recuento de escherichiacoli ufc/g <10; Staphylococcus aureus ufc/g <10; ausencia de salmonella y de listeria monocytogenes. Los valores para el suero ácido son: lactosa, % (p/p) = 3,2 proteína láctea, % (p/p)= 2,25; grasa láctea, %(p/p)= 0,3; ceniza, % (p/p)= 0,53; acidez titulable, % ácido láctico =0,23; pH = 5,4; densidad, g/ml = 1,0274; en cuanto a microorganismos los valores reportados son iguales a los del suero dulce.

Paredes y otros, (2014) en su investigación “Caracterizaron fisicoquímica y microbiológicamente 25 muestras de suero de leche colectadas de diferentes queserías ubicadas en el estado de Chihuahua”. En la que se determinaron los valores de pH, fosfatasa alcalina, materia seca, ceniza, grasa, proteína, densidad, acidez titulable, lactosa, calcio, cuenta total de bacterias mesofílicas aerobias, coliformes, mohos y levaduras. Los resultados indicaron que 56% de las queserías no pasteurizan la leche que se utiliza en la fabricación de queso. Se encontraron diferencias en el contenido de grasa y densidad, mayor en los sueros provenientes de quesos pasteurizados. No se encontraron diferencias en el contenido de coliformes, bacterias mesofílicas aerobias, mohos y levaduras entre los sueros pasteurizados y sin pasteurizar.

Alava, Gomez y Maya (2014), realizan un estudio en la “Caracterización fisicoquímica del suero dulce obtenido de la producción de queso casero en el municipio de Pasto.” Realizado en la ciudad de Pasto –Colombia, las técnicas y los
instrumentos utilizados han permitido obtener información de con las siguientes características: La variable pH se encuentra dentro de los valores de 6.45 y 6.60; siendo, 6.52 el valor promedio del pH, en lo que tiene que ver con la acidez se obtuvo en promedio un valor de 0.08% reportado como porcentaje de ácido láctico, los contenidos de grasa en el suero fluctuaron desde 0.25 % hasta 0.6 %, con un promedio de 0.42%. En esta investigación se encontró que el contenido de proteína está entre 0.85% hasta 1.25%; siendo el valor más alto de 1.2% y el más bajo de 0.85% proveniente de dos de las plantas tomadas como referencia para el análisis, los contenidos de lactosa se tiene que solo una de las plantas se encuentra dentro de las especificaciones de la resolución, con un contenido de 5.2% en promedio; en cambio en las dos plantas restantes los niveles de lactosa se hallan por debajo de los parámetros de la resolución.

Aguas, Chams y Cury (2012), en el artículo de investigación “Evaluación Microbiológica de Suero Costeño y Valoración Higiénica en Puntos de Venta en Montería, Córdoba” realizado en la Universidad de Córdoba (Córdoba –Colombia). El objetivo general planteado es: Evaluar microbiológicamente el suero costeño y valorar higiénicamente los puntos de venta en montería, Córdoba. Las muestras seleccionadas se aplicaron mediante el muestreo Aleatorio Simple (MAS) ellas ascienden a son 21 lugar de expendio. Las unidades de análisis son: coliformes, hongos y Sthaphylococcus coagulasa positiva presentes en el suero de leche. Se observó, que la totalidad de las muestras tenían más de 1100 UFC/g. (Resolución 02310/86 MINISTERIO DE SALUD). La determinación de hongos totales fue positivo en el 100 % de las muestras con valores mínimos de contaminación de 150 UCF/g y valores máximos de 4.300 UFC/g para un promedio de 1.221 UFC/g. La evaluación de las muestras para determinar la presencia de Sthaphylococcus coagulasa positiva, mostró que el 100% se encontraban contaminadas con este microorganismo, con valor mínimo de 268.000 UFC/g y valor máximo de 4.400.000 UFC/g para un promedio de 1.764.190 UFC/g. Las muestras examinadas en su totalidad sobrepasan el límite superior permitido lo que indica que no son aptas para el consumo. Las muestras examinadas en su totalidad sobrepasan el límite superior permitido lo que indica que no son aptas para el consumo; en conclusión, la presente investigación es importante porque indica que para aprovechar el lactosuero en el contenido microbiológico está directamente
relacionado con los expendios, los manipuladores no acreditan cursos de capacitación sobre manipulación del producto.

Callejas et al. (2012), en su estudio “Caracterización fisicoquímica de un lactosuero: potencialidad de recuperación de fósforo” en la Universidad de Guanajuato, Pachuca- Hidalgo-México, La conclusión más resaltante: se trata de un lactosuero ácido con un pH de 4,8, un pZ de -4,02 mV (cercano al punto isoeléctrico que corresponde a un pH de 4,67) y que presenta muy elevadas cargas orgánicas (niveles de DQO > 100 000 mg O2/L), entre los que destacan los contenidos de lactosa (4,45g/dL), ácido láctico (0,27g/dL), grasas (0,83g/dL) y proteínas (1,08g/dL). Los contenidos de fósforo, expresados como iones fosfato en g/L (20,8 g/dL), indican un contenido apreciable que hace interesante el trabajo de recuperar éstos del vertido.
2.2. Bases Teóricas

2.2.1. Elaboración de queso

Queso mozzarella

Molina (1998), en la elaboración del queso mozzarella se realizan las siguientes operaciones como se muestran en la figura 1.

Figura 1: flujograma de elaboración de queso mozzarella
Queso fresco

Molina (1998), el queso fresco es una conserva, de color blanco y sabor salado, que se obtiene por pasteurización de la leche entera de ordeño reciente, cuajando (adicionando cuajo), acidificando (con fermentos bacterianos) y desuerando la leche. Además, se agrega sal para el sabor y cloruro de calcio (opcional) para favorecer el proceso de coagulación. Se sigue las siguientes operaciones según la figura 2.

Figura 2: Flujograma de elaboración de queso fresco
Para la elaboración de queso fresco y mozzarella hasta obtener el primer desuerado es el mismo proceso, por ello hablaremos de la forma de elaboración en general. A continuación, mostramos las operaciones previas al primer desuerado que es de donde obtiene el lactosuero.

2.2.2. Recepción.

Es necesario que la leche no provenga de animales que están en tratamiento con antibióticos, puesto que una cantidad pequeña que se encuentre en el producto evitará que se desarrollen los microrganismos necesarios que intervienen en el procesamiento y maduración del queso. Se realizan pruebas como: california mastitis test (CTM), para determinar mastitis; Pruebas sensoriales (olor, color, sabor) Prueba de alcohol (determinar la estabilidad térmica); Determinación de la acidez; Determinación de la densidad, Prueba para determinar la adición de almidón o Maizena; Prueba para determinar la adición de Formalina (para determinar la presencia del conservante); Prueba de reductasa (determinar contaminación microbiológica); entre otras (Zamorán 2015).

2.2.3. Filtrado.

El filtrado es la operación siguiente a la recepción, se considera un paso importante en la elaboración de quesos. Consiste en hacer pasar el producto a través de una tela para eliminar pelos, pajas, polvo, insectos y otras suciedades que generalmente trae la leche, especialmente cuando el ordeño se realiza en forma manual. La tela o paño debe lavarse después de cada uso con detergente y una solución de cloro a 100 partes por millón (ppm). La tela se debe remplazar después de filtrar a fin de evitar una contaminación, debido a que las partículas de la suciedad pueden convertirse en un vehículo de transmisión de microrganismos a la leche (Zamorán 2015).

Es necesario aclarar que en esta operación solo se eliminan suciedades grandes en función a la permeabilidad del material, más no microrganismos que en definitiva dañan la calidad del queso o pueden causar enfermedades al consumidor.
2.2.4. Pasteurización.

La pasteurización es un proceso térmico que se realiza para eliminar los microorganismos patógenos presentes en la leche, sin alterar las propiedades físicas y químicas de ésta. El método más utilizado para eliminar patógenos es el calentamiento de la leche a 63°C durante 20 minutos. Actualmente la pasteurización se realiza a 64°C durante 30 segundos o a 72°C durante 15 segundos con equipos sofisticados, además existe el método de a UHT a 121 °C a 3-5 segundos (Zamorán 2015).

2.2.5. Lactosuero.

Azti (2015) señala que el lactosuero de quesería “es el líquido resultante de la coagulación de la leche en el proceso de fabricación del queso, tras la separación de la caseína y la grasa. Al tratarse de una materia orgánica puede convertirse en un elemento contaminante si no se gestiona adecuadamente”.

Productos del suero, incluyendo la lactosa, mejoran la textura, realzan el sabor y color, emulsifican y estabilizan, mejorando las propiedades de flujo y muestran muchas otras propiedades funcionales que aumentan la calidad de los productos alimenticios. Basados en el valor nutricional del lactosuero, un número de usos comerciales se han obtenido como etanol, ácidos orgánicos, bebidas no alcohólicas, bebidas fermentadas, biomasa, concentrados, aislados e hidrolizados de proteína, películas comestibles, medio de soporte para encapsular sustancias, producción de xantana, enzimas, separación de la lactosa para fines endulzantes en alimentos entre otras aplicaciones (Parra, 2009)

2.2.5.1. Tipos de lactosuero.

Las dos principales variedades de suero son: el suero ácido (pH<5) y suero dulce (pH 6-7), de acuerdo con el procedimiento que se utilice para la precipitación de la caseína, el suero ácido generalmente contiene más cenizas y menos proteínas que el suero dulce, su uso en la
alimentación es más limitado debido a su sabor ácido y su alto contenido en sales (Guevara, 2010).

2.2.5.2. Composición del lactosuero.

Esto representa cerca del 90% del volumen de la leche y contiene la mayor parte de los compuestos hidrosolubles de ésta, el 95% de lactosa (azúcar de la leche), el 25% de las proteínas y el 8% de la materia grasa. Su composición varía dependiendo del origen de la leche y del tipo de queso elaborado, pero en general el contenido aproximado es de 93.1% de agua, 4.9% de lactosa, 0.9% de proteína cruda, 0.6% de cenizas (minerales), 0.3% de grasa, 0.2% de ácido láctico y vitaminas hidrosolubles. Cerca del 70% de la proteína cruda que se encuentra en el suero corresponde a un valor nutritivo superior al de la caseína. (García, M., 1993; Kirk, R. y Sawyer, R., 2005 citado por Hannibal, y otros, 2015).

2.2.6. Caracterización fisicoquímica.

Estudia sistemáticamente las variables experimentales que afectan a los procesos de disolución, transiciones de fase y reacciones químicas térmicas, fotoquímicas y electroquímicas en medio homogéneos y heterogéneos. A partir de estos estudios se han derivado leyes generales que permiten predecir e interpretar cuantitativamente dichos procesos en forma relativamente rigurosa (Disalvo, sf).

a) Métodos de prueba en base a la Norma Técnica Peruana

Los análisis realizaron mediante las pruebas contempladas en la norma técnica peruana se muestran en la tabla 1, se expone los ensayos los requisitos y el método de ensayo que se debe aplicar. Estos métodos de ensayo se aplican a la leche cruda pero estos mismos métodos se pueden aplicar al suero de leche, pero no se tendrán en cuenta los requisitos ya que como menciona solo es para leche cruda.
Tabla 1: Leche y Productos Lácteos. Leche Cruda. Requisitos

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Requisito</th>
<th>Método de ensayo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia grasa (g/100g)</td>
<td>Mínimo 3,2</td>
<td>NTP 202.028: 1998</td>
</tr>
<tr>
<td>Sólidos no grasos (g/100g)</td>
<td>Mínimo 8,2</td>
<td>FIL-IDF ID: 1996*</td>
</tr>
<tr>
<td>Sólidos totales (g/100g)</td>
<td>Mínimo 11,4</td>
<td>NTP 202.118: 1998</td>
</tr>
<tr>
<td>Acidez, expresada en g. de ácido láctico (g/100g)</td>
<td>0,14 -0,18</td>
<td>NTP 202.116:2000</td>
</tr>
<tr>
<td>Densidad a 15 ° e (g/mL)</td>
<td>1,0296 - 1,0340</td>
<td>NTP 202.007: 1998</td>
</tr>
<tr>
<td>Índice de refracción del suero, 20°C</td>
<td>Mínimo 1,34179 (Lectura refractométrica 37,5)</td>
<td>NTP 202.016: 1998</td>
</tr>
<tr>
<td>Ceniza total (gil OOg)</td>
<td>Máximo 0,7</td>
<td>NTP 202.172: 1998</td>
</tr>
<tr>
<td>Alcalinidad de la ceniza total (ml de Solución de NaOH 1N)</td>
<td>Máximo 1,7</td>
<td>NTP 202.172: 1998</td>
</tr>
<tr>
<td>Índice crioscópico</td>
<td>-0,540°C</td>
<td>NTP 202.184: 1998</td>
</tr>
<tr>
<td>Sustancias extrañas a su naturaleza</td>
<td>Ausencia</td>
<td>**</td>
</tr>
<tr>
<td>Prueba de alcohol (74 % v/v)</td>
<td>No coagulable</td>
<td>NTP 202.030:1998</td>
</tr>
<tr>
<td>Prueba de la reductasa con azul de metileno</td>
<td>Mínimo 4 horas</td>
<td>NTP 202.014:1998</td>
</tr>
</tbody>
</table>

Fuente: NORMA TÉCNICA PERUANA NTP 202.001

b) Métodos de prueba en base a la norma mexicana.

Para la evaluación de las especificaciones que debe poseer el lactosuero se establecen en el presente Proyecto de Norma Mexicana se deben aplicar los métodos de prueba señalados en la tabla 2.
Tabla 2: Parámetro y Método de prueba.

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>MÉTODO DE PRUEBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidez expresada como ácido láctico</td>
<td>NOM-155-SCFI-2003 / Punto 7.2</td>
</tr>
<tr>
<td>Proteínas</td>
<td>NOM-155-SCFI-2003</td>
</tr>
<tr>
<td>pH</td>
<td>NMX-F-317-S-1978</td>
</tr>
<tr>
<td>Densidad</td>
<td>NMX-F-737-COFOCALEC-2010</td>
</tr>
<tr>
<td>Lactosa</td>
<td>NOM-155-SCFI-2003</td>
</tr>
<tr>
<td>Cenizas</td>
<td>NMX-F-607-NORMEX-2002</td>
</tr>
<tr>
<td>Punto Crioscópico</td>
<td>NOM-155-SCFI-2003</td>
</tr>
<tr>
<td>Humedad</td>
<td>NOM-184-SSA1-2002</td>
</tr>
<tr>
<td>Inhibidores</td>
<td>NOM-184-SSA1-2002</td>
</tr>
<tr>
<td>Bacterias mesofílicas aerobias</td>
<td>NOM-092-SSA1-1994</td>
</tr>
<tr>
<td>Organismos coliformes</td>
<td>NOM-113-SSA1-1994</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>NOM-115-SSA1-1994</td>
</tr>
<tr>
<td>Salmonella</td>
<td>NOM-114-SSA1-1994</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>NOM-143-SSA1-1995</td>
</tr>
</tbody>
</table>

En la tabla 3 se presenta las especificaciones físico químicas que deben poseer el lactosuero en base a la norma técnica mexicana, ya que el Perú no se especifica los valores fisicoquímicos y microbiológicos para aprovechar el lactosuero.
Tabla 3: Especificaciones fisicoquímicas del suero de leche líquido pasteurizado Parámetro.

<table>
<thead>
<tr>
<th>Especificaciones fisicoquímicas del suero de leche líquido pasteurizado Parámetro</th>
<th>Suero líquido dulce</th>
<th>Suero líquido ácido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidez expresada como ácido láctico (%)</td>
<td>0,07 a 0,12</td>
<td>> 0,12</td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>0,72 mín.</td>
<td>0,72 mín.</td>
</tr>
<tr>
<td>Ph</td>
<td>6,4 a 6,7</td>
<td>< 6,4</td>
</tr>
<tr>
<td>Densidad (g/mL)</td>
<td>1,023 a 1,026</td>
<td>1,023 a 1,026</td>
</tr>
<tr>
<td>Grasa (%)</td>
<td>0,10 máx.</td>
<td>0,10 máx.</td>
</tr>
<tr>
<td>Lactosa (%)</td>
<td>4,7 mín.</td>
<td>4,7 máx.</td>
</tr>
<tr>
<td>Cenizas (%)</td>
<td>0,53 mín.</td>
<td>0,53 máx.</td>
</tr>
<tr>
<td>Punto Crioscópico ºC (ºH)</td>
<td>-0,498 (-0,520) a -0,556 (-0,580)</td>
<td>< -0,556 (-0,580)</td>
</tr>
<tr>
<td>Inhibidores</td>
<td>Negativo</td>
<td>Negativo</td>
</tr>
<tr>
<td>Bacterias mesofílicas aerobias (UFC/mL)</td>
<td>10 000 máx.</td>
<td>10 000 máx.</td>
</tr>
<tr>
<td>Organismos coliformes (UFC/mL)</td>
<td>100 máx.</td>
<td>100 máx.</td>
</tr>
</tbody>
</table>

c) Análisis proteico

El procedimiento para determinar, se basa en la determinación del nitrógeno proteico con el método de Kjeldahl. Sin embargo, como este método requiere un tiempo de ejecución bastante largo, éste puede ser sustituido por procedimientos más rápidos y suficientemente precisos para efectuar controles a nivel de planta o industrial (Artica, Baquerizo & Mery 2014).

Para el análisis por método de Kjeldahl

Artica, Baquerizo y Mery (2014), para realizar el análisis se pesan 10 gramos de muestra en un vaso, luego se adicionan 78 mL de agua y 12 gramos de ácido tricloroacético. Se agita y se deja en reposo durante tres o cuatro minutos. Después se filtra y se lava con disolución de ácido tricloroacético al 12%. Finalmente se determina el nitrógeno mediante el método Kjeldahl. Para realizar los cálculos de cuantificación se procede en base a la siguiente relación:
d) Evaluación Microbiológica.

Consiste en una inspección de alimentos o sustancias por medio de pruebas que permiten detectar si se presentan o no elementos patógenos. De acuerdo con la cantidad de agentes patógenos encontrados y el grado de contaminación que tengan los alimentos o sustancias analizadas, se puede determinar si es apto o no para su posterior procesamiento y consumo en humanos o animales (Alkemi, S.f).

Recuento de microorganismos aerobios mesófilos. El análisis microbiológico objeto de la práctica permitirá estimar la flora total que porta el alimento, la cual reflejará su calidad higiénico-sanitaria. Según la norma PROY-NMX-F-721-COFOCALEC-2012 el máximo número de microorganismos Mesófilos aerobia es aproximadamente $4 \text{ Log}_{10}\text{UFC mL}^{-1}$. Antes de procesar el lactosuero para uso alimentario debe estar por debajo del parámetro establecido (Paredes et al, 2014).

Numeración de coliformes.

Los coliformes proliferan en gran cantidad de alimentos, como agua y productos lácteos. Pueden ser fácilmente destruidos por el calor utilizado en las diversas etapas de elaboración (Doyle, 2007 citado por Sylvia Vázquez, 2013). Si bien el índice de coliformes ha sido aplicado a la evaluación de los alimentos durante muchos años, en algunos de ellos existen limitaciones. En productos lácteos – y otros - no indica contaminación fecal, sino que refleja la higiene general de la planta industrial (Jay, 2002 citado por Sylvia Vázquez, 2013). El análisis microbiológico de las Enterobacterias permitirá predecir el grado de contaminación fecal que tiene un alimento. Para su análisis se utilizará la técnica de recuento en medio sólido (Cortés, 2013).
Mohos y Levaduras. Su crecimiento lento y a su baja competitividad, los hongos y levaduras se manifiestan en los alimentos donde el crecimiento bacteriano es menos favorable. Estas condiciones pueden ser bajos niveles de pH, baja humedad, alto contenido en sales o carbohidratos, baja temperatura de almacenamiento, la presencia de antibióticos, o la exposición del alimento a la irradiación. Por lo tanto pueden ser un problema potencial en alimentos lácteos fermentados, frutas, bebidas de frutas, especias, oleaginosas, granos, cereales y sus derivados y alimentos de humedad intermedia como las mermeladas, cajetas, especias, etc (Camacho, 2009).

- Para calcular la cantidad de UFC tanto para los microrganismos aerobios mesófilos y para los mohos-levaduras, se ha tenido en cuenta a Sbodo, & Tercero (2004), el cual plantea una fórmula para determinar UFC/ ml y es la siguiente:

\[
\frac{UFC}{ml} \times Dilución
\]
CAPITULO III: METODOLOGÍA DE LA INVESTIGACIÓN

3.1. Ámbito de estudio
Las muestras para la evaluación fueron tomadas en el distrito de Lajas provincia de Chota departamento de Cajamarca.
En el distrito de Lajas (Y1), está ubicada la planta productora de pasta para queso mozzarella con una producción de lactosuero de alrededor de 1500 litros de suero al día en dos plantas queseras de la misma empresa. Además, se realizó la evaluación de una muestra de suero del queso fresco que se ofrece en mercado central de Chota (Y2).

3.2. Materiales y método de investigación

3.2.1. Diseño de investigación

Figura 3: Diseño de la investigación
3.2.2. Población, muestra y muestreo

Población: Productores de suero del mercado central (suero de los vendedores de queso fresco) y planta quesera de lajas (suero de queso tipo mozarrella).

Muestra: Suero de queso fresco que se expende en el mercado central y suero de la planta quesera de lajas (Churucancha).

Muestreo: Se realizó un muestreo aleatorio simple, se tomó muestras de lactosuero de los 10 puestos de venta de queso fresco del mercado central de Chota (30 muestras) y de la planta quesera de Lajas de los 7 lotes de producción de queso mozarrella (21 muestras).

3.2.3. Descripción de la experimentación.

Para el análisis microbiológico tomamos las muestras de lactosuero del lugar Y1 y Y2, luego se llevó a los laboratorios de la Universidad Nacional Autónoma de Chota.

Se tomaron las muestras de 10 puestos de venta de queso fresco (3 muestras por cada puesto de venta) del mercado Central de Chota, las muestras tomadas fue de lactosuero escurredo de los queso fresco prensados. Luego nos trasladamos al centro de producción de queso en el distrito de lajas en donde recogimos la muestra (500 ml), siguiendo el protocolo establecido según (MINISTERIO DE SALUD, 2011) para la toma de muestras y transporte como se redacta a continuación; se tomó la muestra de lactosuero de los depósitos del desuerado y se colocó en un frasco estéril de vidrio y se llevó a refrigeración por 1 día.

Para el análisis microbiológico luego del tiempo transcurrido en refrigeración, depositamos la muestra en tubos de ensayo y realizamos las diluciones hasta 10^{-5}, luego realizamos la siembra por profundidad donde añadimos medio de cultivo fundido y enfriado a 50°C sobre placa de Petri que contiene una cantidad determinada de la muestra diluida de agar MacConkey. Tapamos la placa y se movió para mezclar la muestra en el
agar. Cuando el agar solidifica se incuban las placas. Las colonias se desarrollaron tanto dentro del agar como en la superficie.

Para la siembra en superficie se realizó con la ayuda de una asa microbiológica, el cual nos sirvió para esparcir la muestra en todo el cultivo que contenía la placa Petri, dicho procedimiento se realizó con la ayuda del mechero bunsen cerca para evitar alguna contaminación por otros microorganismos, luego de esto las muestras contenidas en las placas Petri fueron colocadas a la incubadora x 24 horas a 37°C; después de este tiempo de incubación procedimos a realizar el recuento de colonias respectivo.

Para el análisis proteico se realizó con el equipo Milkotester que sirve para analizar lácteos, se analizó a las tres muestras recogidas de cada puesto de venta del mercado central de Chota como también las muestras recolectadas de la planta quesera de Lajas. Cada una de las muestras fueron analizadas en un lapso de tiempo de 40 a 60 segundos por el equipo Milkotester, arrojando el contenido de proteínas en porcentaje.

Materiales y equipos utilizados

Tabla 4: Materiales y equipos

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Equipos</th>
<th>Cultivos microbiológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Vasos de precipitado.</td>
<td>- Contador de colonias.</td>
<td>- Agar Mac-conkey.</td>
</tr>
<tr>
<td>- Probetas.</td>
<td>- Incubadora.</td>
<td>- Agar Saburoud.</td>
</tr>
<tr>
<td>- Pipetas.</td>
<td>- Milkotester</td>
<td></td>
</tr>
<tr>
<td>- Placas Petri.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mechero bunsen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Asa microbiológica.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bureta.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Matraces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tubos de ensayo.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.4. Técnicas e instrumentos de acopio de datos

<table>
<thead>
<tr>
<th>TECNICAS</th>
<th>INSTRUMENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVACIÓN</td>
<td>FICHAS DE OBSERVACIÓN</td>
</tr>
<tr>
<td></td>
<td>FICHAS DE REGISTRO</td>
</tr>
</tbody>
</table>

3.2.5. Procedimiento de recolección de datos

Se recogió la muestra de lactosuero aplicando los procedimientos de recolección de muestra.

Se procedió a analizar la muestra en el laboratorio usando el método de dilución, se realizó la siembra por superficie y profundidad en agar MacConkey, posteriormente se llevó a incubación a 37°C por 24 horas y finalmente se realizó el recuento total de microorganismos mesófilos.

Para el análisis proteico se recolectó las muestras de ambos tipos de queso y se llevó a refrigeración posteriormente se analizó con el equipo milkotester que arrojó la lectura entre 40 a 60 segundos.

La recolección de datos se realizó a través de fichas las cuales se muestran en los anexos, ficha de observación y focha de registró en las que se registró la muestras, la fecha, hora, el lugar y las observaciones correspondientes.

3.3. Análisis de información

Para el análisis estadístico de los resultados se utilizó MINITAB 18 un software gratis por 30 días para universitarios, en la cual se realizó una comparación de medias con todos los promedios obtenidos de cada muestra con un patrón de control que era el límite de microorganismos permitidos según la norma PROY-NMX-F-721-COFOCALEC-2012. SISTEMA PRODUCTO LECHE - ALIMENTOS – LÁCTEOS – SUERO DE LECHE que se muestra en la tabla 3, el contenido de proteínas se realizó también comparación de medias teniendo como media de control en el lactosuero para verificar si los resultados tenían diferencias significativas.
CAPITULO IV: RESULTADOS

4.1. Resultados

4.1.1. Resultados del contenido proteico

Contenido proteico del Queso fresco

En la tabla 5 se observa los resultados del contenido proteico de las muestras tomadas de lactosuero escurrido de los quesos frescos prensados del mercado central de Chota, se observa los resultados de las tres muestras realizadas por cada puesto y el promedio de ellas. Se observa que se encuentra en un rango de 0.5 y 1.1% de proteínas no se encontraron valores con diferencia significativa.

Tabla 5: contenido proteico en muestras de suero de queso fresco del mercado central de Chota (%).

<table>
<thead>
<tr>
<th>Puesto de venta</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>M9</th>
<th>M10</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>0.8</td>
<td>0.6</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promedio</td>
<td>0.9</td>
<td>0.6</td>
<td>0.7</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>0.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

p: puesto de venta, M: muestra (NS) no muestra diferencia significativa

En la figura 4 se observa la comparación de medias realizadas al 95 % de confianza, con 0.72% como media de control donde no se observó diferencia alguna debido a que no se encontró ningún intervalo fuera de la línea de control.
Si un intervalo no contiene cero, las medias correspondientes son significativamente diferentes a la línea de control.

Figura 4: Comparación de medias del contenido proteico del queso fresco

Contenido proteico del Queso Mozzarella

En la tabla 6 se muestra los resultados del contenido proteico de las muestras de lactosuero obtenidas de la planta quesera del distrito de Lajas, aquí se observa resultados de 7 lotes de producción de los cuales se tomaron tres muestras, se reporta que si existe diferencia significativa en los promedios de las muestras del lote 1 y 3 mientras que en los demás lotes el contenido de proteína es bajo en comparación con lo que está dentro de la norma de composición del suero pasteurizado que es 0.72 % proteína, pero en este caso no muestra diferencias significativas. El contenido proteico va desde 0.3 a 0.5% es más bajo que el queso fresco.

Tabla 6: Contenido proteicos del suero de queso mozzarella elaborado en la planta quesera del Distrito de Lajas(%)。

<table>
<thead>
<tr>
<th>LOTE</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>5L</th>
<th>L6</th>
<th>L7</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>M2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>M3</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.3<sup>*</sup></td>
<td>0.4<sup>NS</sup></td>
<td>0.3<sup>*</sup></td>
<td>0.5<sup>NS</sup></td>
<td>0.5<sup>NS</sup></td>
<td>0.5<sup>NS</sup></td>
<td>0.5<sup>NS</sup></td>
</tr>
</tbody>
</table>

L: lote, M: muestra (*) muestra diferencia significativa, (NS) no muestra diferencia significativa
En la figura 5 se observa la comparación de medias de las muestras de lactosuero de la planta quesera de lajas, donde observamos que el lote 1 y 3 están fuera de la línea de control lo que significa que muestra diferencia significativa en comparación con los demás resultados.

![Diagrama de ICs simultáneos de 95% de Dunnett](image)

Si un intervalo no contiene cero, las medias correspondientes son significativamente diferente a la línea de control.

Figura 5: Comparación de medias del contenido proteico del queso mozarrella

4.1.2. Resultados del contenido microbiológico

A continuación, se presentan los resultados obtenidos en cuanto a cantidad de microorganismos presentes en el suero de leche dulce.

En la tabla 6 se muestran los resultados del mercado central de Chota de las muestras analizadas, con ello podemos apreciar que el contenido de microorganismos es elevado ya que en las dos primeras diluciones no se pueden determinar. Se reporta una diferencia significativa bastante alejada del valor permitido según la norma del suero pasteurizado que es de 10 000 UFC/ml como máximo.
Tabla 7: Contenido microbiológico del lactosuero de queso fresco del Mercado Central de Chota.

<table>
<thead>
<tr>
<th>Tipo de análisis</th>
<th>Muestra</th>
<th>Yayın de Remoto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1: lactosuero de queso fresco</td>
<td>UFC/ml</td>
</tr>
<tr>
<td>Mesófilos aerobios</td>
<td>10^{-1}</td>
<td>ND</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>UFC</td>
<td>10^{-3}</td>
<td>99 UFC</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>58 UFC</td>
<td>$5,80 \times 10^6$ (*)</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>34 UFC</td>
<td>$3,40 \times 10^7$ (*)</td>
</tr>
<tr>
<td>Mohos y Levaduras</td>
<td>10^{-1}</td>
<td>ND</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>UFC</td>
<td>10^{-3}</td>
<td>110 UFC</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>65 UFC</td>
<td>$6,50 \times 10^6$ (*)</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>38 UFC</td>
<td>$3,80 \times 10^7$ (*)</td>
</tr>
</tbody>
</table>

(*) muestra diferencia significativa

En la tabla 8 se muestran los resultados lo que respecta a la muestra de queso mozzarella donde se muestra una concentración de microorganismos de 99 UFC/ml de mesófilos aéreos. Se observa también la concentración de 70 UFC/ml de mohos y levaduras. Reportándose que en esta muestra la concentración y la contaminación fue menor debido a que lectura fue a partir de la primera. No muestra diferencia significativa en comparación con la norma del lactosuero pasteurizado.
Tabla N° 8: Resultados de las muestras de lactosuero de queso mozzarella

<table>
<thead>
<tr>
<th>Tipo de análisis</th>
<th>Muestra</th>
<th>UFC/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y2: lactosuero de queso mozzarella</td>
<td></td>
</tr>
<tr>
<td>Mesófilos aerobios</td>
<td>10^{-1}</td>
<td>59 UFC</td>
</tr>
<tr>
<td></td>
<td>10^{-2}</td>
<td>10 UFC</td>
</tr>
<tr>
<td></td>
<td>10^{-3}</td>
<td>3 UFC</td>
</tr>
<tr>
<td></td>
<td>10^{-4}</td>
<td>........</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>........</td>
</tr>
<tr>
<td>Mohos y Levaduras</td>
<td>10^{-1}</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>10^{-2}</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>10^{-3}</td>
<td>70 UFC</td>
</tr>
<tr>
<td></td>
<td>10^{-4}</td>
<td>27 UFC</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>10 UFC</td>
</tr>
</tbody>
</table>

NS: no hay diferencia significativa con los datos de la norma de suero pasteurizado

4.1.3. Resultados del proceso de elaboración del queso

El Flujograma pudimos apreciar en la elaboración de queso mozzarella:

- En la recepción, no se efectúo ningún análisis de inspección a la leche, por consecuencia la calidad del producto y del subproducto (lactosuero) serán inciertas, ya que no se sabe con qué calidad de materia prima se está trabajando.

- En la operación de tamizado hicieron uso de una tela blanca, que solo fue lavada después de realizar todo el trabajo, no se desinfectaba.

- En la operación de pasteurización la temperatura fue determinada mediante el tacto, adicionalmente se vertió otras leches sin pasteurizar y se homogenizó; el tiempo de pasteurización no lo tuvieron en cuenta.
- En el desuerado se hace uso de jarras que no están desinfectadas, ya que estas solo son enjuagadas con agua corriente y que sirven para transportar leche y suero.

- Las condiciones en las que se elaboran son deficientes, en cuanto a vestimenta y a instalaciones; lo que hace que el contenido de microorganismos sea elevado.

Para el caso de queso fresco no se estuvo presente en las operaciones de elaboración ya que estas solo fueron mencionadas por las vendedoras de queso fresco, escuchando las versiones de a cada vendedor pudimos apreciar que las operaciones que realizaban no eran las óptimas ni las adecuadas para la elaboración.

4.2. Discusión

4.2.1. Para el contenido proteico

Sánchez, Garzón, et al., (2009) en su estudio de Aprovechamiento del suero lácteo de una empresa del norte antioqueño mediante microorganismos eficientes, reporta en sus resultados que el porcentaje de proteína de 0.86 ±0.04% en el suero sin tratamiento se incrementa hasta 6.58 ±0.15% en la fase precipitada. Esto se debe a la capacidad que tienen los microorganismos eficientes de absorber nitrógeno, que se encuentra en forma de sales en el suero. El nitrógeno es metabolizado por los microorganismos propiciando una reacción de sustitución, donde los grupos hidroxílicos de las moléculas polilácticas son reemplazados por grupos aminos, aumentando la cantidad de nitrógeno proteico en la fase sólida o precipitada, de igual forma como actúan en los suelos. En el estudio realizado el contenido de proteínas para el suero de queso fresco fue de 0.5% el mínimo y el máximo de 1.1 % mostrando que el porcentaje de proteínas está dentro del rango debido a que este tipo de queso es elaborado de manera artesanal si realizar un correcto tratamiento térmico, para el queso mozzarella en contenido fue de 0.3% el mínimo y el máximo de 0.5% mostrando un contenido de proteínas menor, esto se debió a que el tratamiento térmico se realiza hasta 72°C, lo que indica que en
el contenido de proteínas tiene que ver mucho el tratamiento térmico y el contenido de sales.

Alava, Gomez y Maya (2014), en su estudio de “Caracterización fisicoquímica del suero dulce obtenido de la producción de queso casero en el municipio de Pasto.” Realizado en la ciudad de Pasto. Reportaron que el contenido de proteína está entre 0.85% hasta 1.2%; siendo el valor más alto de 1.2% y el más bajo de 0.85% proveniente de dos plantas lácteas. Sin embargo en el estudio realizado encontramos un contenido de proteína de 0.5 a 1.1% para el suero de queso fresco y para el suero de queso mozarrella un contenido de 0.3 a 0.5%, mostrándose que el suero del queso fresco tiene mejor contenido proteico.

4.2.2. Para el contenido microbiológico

De las muestras analizadas pudimos observar que el queso fresco tenía una contaminación elevada, como se puede apreciar en la tabla 5 en la cual la lectura se realizó a partir de la dilución 10^{-3}, debido a que en las primeras dos placas los UFC eran difíciles de determinar y de realizar el recuento. Por lo que pudimos afirmar que la contaminación por microorganismos en el suero de este tipo de queso es demasiado elevada. Esto se debió a que la pasteurización de la leche no era la adecuada y no evaluó su calidad en la recepción; la temperatura no fue superior de los microorganismos mesófilos, ya que a este rango de temperatura es la óptima para su desarrollo.

Mediante la Norma técnica peruana Los análisis se realizan mediante las pruebas mostradas en la tabla 1, en ella se expone los ensayos los requisitos y el método de ensayo que se debe aplicar. Estos métodos de ensayo se aplican a la leche cruda (Norma técnica peruana). Mediante estas pruebas se determina la calidad con la que se recibe la leche, pero en la presente investigación no se realiza ningún tipo de análisis en la recepción, por consecuencia no se sabe con qué tipo de materia prima se está trabajando, generando que las características de calidad del producto y del subproducto como es el lactosuero sean al azar.
En el “Proyecto de Cooperación de Seguimiento para el Mejoramiento Tecnológico de la Producción Láctea en las Micros y Pequeñas Empresas de los Departamentos de Boaco, Chontales y Matagalpa”, se ha implementado un manual para elaboración de quesos en los que menciona que: es importante durante la pasteurización, en la que se mantener un estricto control del tiempo y la temperatura indicada para cada tipo; además el manual especifica que Una leche sin pasteurizar que proviene de un mal ordeño y falta de higiene resultará en productos de mala calidad que pueden enfermar al consumidor (Zamoran, 2015). El manual rescata la importancia de realizar una correcta pasteurización, en la presente investigación se encontró que no se hace un control de tiempo y temperatura, generando como dice el manual una mala calidad del producto final y del subproducto como es el lactosuero. El problema encontrado, es que los productores desconocen esta operación y la importancia que tiene, tanto para el queso fresco como para el mozzarella no se pasteuriza.

Según Aguas, Chams & Cury (2012), las técnicas y los instrumentos utilizados en su investigación les permitió obtener información de análisis microbiológico de suero costeño en puntos de venta con las siguientes características: La determinación de hongos totales fue positivo en el 100 % de las muestras con valores mínimos de contaminación de 1.50 UCF/g y valores máximos de 4.300 UFC/g para un promedio de 1.221 UFC/g. Las muestras examinadas en su totalidad sobrepasan el límite superior permitido lo que indica que no son aptas para el consumo (Aguas, Chams, & Cury, 2012). En nuestros resultados indicamos que el suero de queso fresco tiene 99 UFC y para el queso mozzarella resulto 59 UFC los cuales sobrepasan lo indicado por el autor; el contenido de microorganismos en el queso fresco supera los límites establecidos por los autores, podemos afirmar que el suero de este tipo de queso no es apta para el consumo humano, y con respecto al suero de queso mozzarella el resultado de microorganismos es menor que el anterior, pero también los resultados fuera de los límites por lo que podemos afirmar el lactosuero no es apto ya que para ser consumido directamente, siendo necesario un tratamiento complementario.

Según Paredes, Chávez, Rodríguez, Aguilar, Rentería, & Rodríguez (2014), en su investigación sobre analisis microbiologico del queso Chihuahua, en donde
realizo un análisis del suero que obtuvo como subproducto; tubo como resultado 9.51x10^6 UFC·ml⁻¹, indicando que la carga microbiana es demasiado elevada y que podría provocar ETAs en los consumidores de productos que contengan suero de leche, el máximo debería ser 4 X10^6 UFC·ml⁻¹. En nuestro estudio de lactosuero o suero de leche obtuvimos un resultado de 9.90 en la dilución 10⁻³ en la muestra de queso fresco lo que podemos indicar que tiene una carga microbiana demasiado elevada. En la muestra de queso mozzarella obtuvimos un resultado de 5.90 en la primera dilución, este resultado es menor, pero está por encima del valor aceptable que es 4.00; este valor se debe a que en este tipo de queso se realiza a una mayor temperatura que el anterior.

Grandos, Acevedo & Torres. (2012); en su artículo Calidad de la leche y del suero costeño de los municipios Turbaco, Arjona y Carmen de Bolívar – Colombia, reporta que Las altas cargas microbianas que presentaron los sueros costeños artesanales son consecuencias de las deficiente condiciones higiénico-sanitarias para la elaboración, en nuestro estudio realizado los resultados obtenidos son demasiados altos por lo que podemos afirmar que se debe a las deficiente condiciones higiénicas con las que son manipulados estos productos y a los tratamientos térmicos inadecuados que se realizan el proceso.

Conclusiones

✓ El contenido proteico del lactosuero es mayor en el suero de queso tipo fresco (0.5 a 1.1%) mientras que en el suero del queso mozzarella tiene un bajo contenido de proteínas (0.3 a 0.5%).

✓ El lactosuero de queso mozzarella tiene menor contenido de microrganismos aerobios mesófilos (59UFC) que el lactosuero de queso fresco (99 UFC). Demostrándose que el lactosuero de queso mozzarella tiene menor carga microbiológica.

✓ En la planta quesera del Distrito de Lajas el proceso que se sigue para la elaboración de queso fresco y obtención de lactosuero es el siguiente: la recepción de la leche, tamizado, pasteurización, enfriamiento, aplicación del cuajo y
desuerado; también se observó que en este proceso es carente en cuanto al análisis (pH, densidad, prueba de mastitis, acidez y temperatura) y a la recepción de la leche, el tiempo y temperatura de pasteurización, la higiene de los materiales y de la instalación de los mismos es inadecuado, además no se usa la indumentaria adecuada para el proceso.

Recomendaciones

✓ Realizar una caracterización físico-química de manera general del lactosuero para poder ser más precisos en la valoración de su potencial agroindustrial, ya que en nuestra investigación solo se estudió dos características y de manera general debido a la falta de equipos.

✓ Estudiar la presencia y tipo de microorganismos patógenos presentes en el lactosuero.

✓ Se debe implementar mejoras en el proceso de elaboración por parte de los productores con la ayuda de gobiernos locales, ello permitirá mejorar la calidad de los quesos tipo fresco vendidos en el mercado central para tener un subproducto (lactosuero) de mejor calidad y la calidad del lactosuero.
Referencia Bibliográfica

Alkemi. (s.f.). Acerca de nosotros: *Alkemi análisis microbiológicos*. Obtenido de sitio web de Alkemi análisis microbiológicos: http://alkemi.es/estudios-medioambientales/analisis-microbiologicos/

Tecnalia, a. (Dirección). (2008). LIFE_Valorlact (Español 1) [Película].

Anexos

Glosario de términos

1. **Proceso.** Se denomina proceso al conjunto de etapas u operaciones, que se realizan con el fin de obtener productos.

2. **Subproducto.** Se entiende por subproducto, a cualquier residuo sólido o líquido que se obtiene dentro de un proceso de manufactura, con valor económico o no.

3. **Lactosuero.** Líquido amarillo verdoso obtenido de la fabricación de queso, luego de la separación de la cuajada o fase micelar; este puede ser ácido o dulce.

4. **pH.** expresa comúnmente como la concentración del ion hidrógeno presente.

5. **Grasa.** Son ésteres de ácidos grasos con glicerol que agrupar para formar compuestos.

6. **Proteína.** Las proteínas son macromoléculas complejas desde los puntos de vista físico y funcional, que desempeñan múltiples funciones de importancia crucial.

7. **Pasteurización.** Es un proceso térmico que se realiza para eliminar microorganismos patógenos, este se realiza una temperatura y tiempo determinado.

8. **Recuento de microorganismo.** En este procedimiento permite saber la cantidad de m.o presentes.

9. **UFC.** Siglas que significan una unidad formadora de colonias, estas se obtienen después de realizar un recuento, cada punto representa una colonia.

10. **UHT.** Se denomina así a la ultra pasteurización, la cual se realiza a una temperatura mayor a 100 °C por un corto tiempo.

11. **Calidad.** En la industria este término hace referencia al nivel de aceptabilidad de un producto en función del consumidor y de las normas que los rigen las manufactureras.
FICHA DE OBSERVACIÓN

Apellidos y Nombres del recolector de la muestra:

Fecha:
Empresa:

<table>
<thead>
<tr>
<th>Número de muestra</th>
<th>Localidad</th>
<th>CONSIDERACIONES</th>
<th>Cantidad en ml</th>
<th>Hora</th>
<th>Producción</th>
<th>Recojo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lajas</td>
<td></td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>N° 1</td>
<td>Chota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

..
..
Firma del Productor

..
..
Firma del recolector
FICHA DE REGISTRO

Código de ficha: 000…..

Apellidos y Nombres del responsable:
Fecha: / / Hora:
Laboratorio:

<table>
<thead>
<tr>
<th>Número de muestra</th>
<th>Acidez</th>
<th>pH</th>
<th>Grasa</th>
<th>Densidad</th>
<th>Lactosa</th>
<th>Proteína</th>
<th>Mesófilos aerobios y facultativos UFC</th>
<th>Numeración de coliformes UFC</th>
<th>Mohos y Levaduras UFC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HRS</td>
<td>HRL</td>
<td>CANT</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* HRS: Hora de siembra
** HRL: Hora de lectura
*** CANT: Cantidad total de UFC

Firma del responsable
<table>
<thead>
<tr>
<th>Recepción de la leche</th>
<th>Tela para tamizar leche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasteurización</td>
<td>Desuerado</td>
</tr>
</tbody>
</table>
FOTOGRAFÍAS DEL ANÁLISIS MICROBIOLÓGICO DEL LACTOSUERO DE QUESO FRESCO

Preparación del medio de cultivo

Dilución

Siembra de microorganismos

Recuento de Microorganismos
FOTOGRAFÍAS DEL ANÁLISIS MICROBIOLÓGICO DEL LACTOSUERO DE QUESO MOZZARELLA

<table>
<thead>
<tr>
<th>Muestra de lactosuero de queso mozzarella</th>
<th>Diluciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placas sembradas agar saburoud</td>
<td>Placas sembradas agar mackonckey</td>
</tr>
<tr>
<td>Siembra en masa</td>
<td>Recuento de microorganismos</td>
</tr>
</tbody>
</table>
ARTÍCULO CIENTÍFICO